1 |
Tsiodras S, GoldH S, Sakoulas G, et al. Linezolid resistance in a clinical isolate of Staphylococcus aureus[J]. Lancet, 2001, 358(9277):207-208.
|
2 |
Wilson P, Andrews JA, Charlesworth R, et al. Linezolid resistance in clinical isolates of Staphylococcus aureus[J]. J Antimicrob Chemother,2003, 51(1): 186-188.
|
3 |
Flamm RK, Farrell DJ, Mendes RE, et al. ZAAPS Program results for 2010: an activity and spectrum analysis of linezolid using clinical isolates from 75 medical centres in 24 countries[J]. J Chemother, 2012,24(6): 328-337.
|
4 |
Flamm RK, Mendes RE, Ross JE, et al. An international activity and spectrum analysis of linezolid: ZAAPS Program results for 2011[J].Diagn Microbiol Infect Dis, 2013, 76(2): 206-213.
|
5 |
Gu B, Kelesidis T, Tsiodras S, et al. The emerging problem of linezolid-resistant Staphylococcus[J]. J Antimicrob Chemother, 2013,68(1): 4-11.
|
6 |
Howe RA, Wootton M, Noel AR, et al. Activity of AZD2563, a novel oxazolidinone,against Staphylococcus aureus strains with reduced susceptibility to vancomycin or linezolid[J]. Antimicrob Agents Chemother, 2003, 47(11): 3651-3652.
|
7 |
Meka VG, Pillai SK, Sakoulas G, et al. Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23SrRNA gene and loss of a single copy of rRNA[J]. J Infect Dis, 2004, 190(2): 311-317.
|
8 |
Livermore DM, Warner M, Mushtaq S, et al. In vitro activity of the oxazolidinone RWJ-416457 against linezolid-resistant and -susceptible staphylococci and enterococci[J]. Antimicrob Agents Chemother,2007, 51(3): 1112-1114.
|
9 |
Livermore DM, Mushtaq S, Warner M, et al. Activity of oxazolidinone TR-700 against linezolid-susceptible and-resistant staphylococci and enterococci[J]. J Antimicrob Chemother, 2009, 63(4):713-715.
|
10 |
Hu YY, Zhang R, Zhou HW, et al. Linezolid-resistant clinical isolates of meticillin-resistant coagulase-negative staphylococci and Enterococcus faecium from China[J]. J Med Microbiol, 2012, 61(Pt 11): 1568-1573.
|
11 |
Besier S, Ludwig A, Zander J, et al. Linezolid resistance in Staphylococcus aureus: gene dosage effect, stability, fitness costs, and cross-resistances[J].Antimicrob Agents Chemother, 2008, 52(4): 1570-1572.
|
12 |
Schwarz S, Werckenthin C, Kehrenberg C. Identification of a plasmidborne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri[J]. Antimicrob Agents Chemother, 2000, 44(9): 2530-2533.
|
13 |
Kehrenberg C, Schwarz S, Jacobsen L, et al. A new mechanism for chloramphenicol, forfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503[J]. Mol Microbiol, 2005, 57(4): 1064-1073.
|
14 |
Toh SM, Xiong L, Arias CA, et al. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid[J]. Mol Microbiol,2007, 64(6): 1506-1514.
|
15 |
Shen J, Wang Y, Schwarz S.Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria[J]. J Antimicrob Chemother, 2013, 68(8): 1697- 1706.
|
16 |
Kehrenberg C, Schwarz S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates[J]. Antimicrob Agents Chemother, 2006, 50(4): 1156-1163.
|
17 |
Kehrenberg C, Cuny C, Strommenger B, et al. Methicillin-resistant and -susceptible Staphylococcus aureus strains of clonal lineages ST398 and ST9 from swine carry the multidrug resistance gene cfr[J].Antimicrob Agents Chemother, 2009, 53(2): 779-781.
|
18 |
Kehrenberg C, Aarestrup FM, Schwarz S. IS21-558 insertion sequences are involved in the mobility of the multiresistance gene cfr[J]. Antimicrob Agents Chemother, 2007, 51(2): 483- 487.
|
19 |
Wang Y, Zhang W, Wang J, et al. Distribution of the multidrug resistance gene cfr in Staphylococcus species isolates from swine farms in China[J]. Antimicrob Agents Chemother, 2012, 56(3): 1485-1490.
|
20 |
Wang XM, Zhang WJ, Schwarz S, et al. Methicillin-resistant Staphylococcus aureus ST9 from a case of bovine mastitis carries the genes cfr and erm(A) on a small plasmid[J]. J Antimicrob Chemother,2012, 67(5): 1287-1289.
|
21 |
Wang Y, He T, Schwarz S, et al. Multidrug resistance gene cfr in methicillin-resistant coagulase-negative staphylococci from chickens[J]. Int J Med Microbiol, 2013, 303(2): 84-87.
|
22 |
Yang XJ, Chen Y, Yang Q, et al. Emergence of cfr-harboring coagulase-negative Staphylococci among patients received linezolid therapy in two hospitals of China[J]. J Med Microbiol, 2013, 62(Pt 6):845-850.
|
23 |
Chen H, Wu W, Ni M, et al. Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms[J]. Int J Antimicrob Agents, 2013, 42(4): 317-321.
|
24 |
Locke JB, Hilgers M, Shaw KJ. Mutations in ribosomal protein L3 are associated with oxazolidinone resistance in staphylococci of clinical origin. Antimicrob[J]. Agents Chemother, 2009, 53(12): 5275-5278.
|
25 |
Locke JB, Hilgers M, Shaw KJ. Novel Ribosomal Mutations in Staphylococcus aureus Strains Identified through Selection with the Oxazolidinones Linezolid and Torezolid(TR-700)[J]. Antimicrob Agents Chemother, 2009, 53(12): 5265-5274.
|
26 |
de Almeida LM, de Araújo MR, Sacramento AG, et al. Linezolid resistance in Brazilian Staphylococcus hominis strains is associated with L3 and 23S rRNA ribosomal Mutations[J]. Antimicrob Agents Chemother, 2013, 57(8): 4082-4083.
|
27 |
Cui L, Wang Y, Li Y, et al. 2013Cfr-mediated linezolid-resistance among methicillin-resistant coagulase-negative Staphylococci from infections of humans[J]. PLoS One, 2013, 8(2): e57096.
|
28 |
Román F, Roldán C, Trincado P, et al. Detection of Linezolid-Resistant Staphylococcus aureus with 23S rRNA and Novel L4 Riboprotein Mutations in a Cystic Fibrosis Patient in Spain[J]. Antimicrob Agents Chemother, 2013, 57(5):2428-2429.
|
29 |
LaMarre JM, Howden BP, Mankin AS. Inactivation of the indigenous methyltransferase RlmN in Staphylococcus aureus increases linezolid resistance. Antimicrob[J]. Agents Chemother, 2011, 55(6): 2989-2991.
|
30 |
Toh SM, Mankin AS. An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors[J]. J Mol Biol, 2008, 380(4): 593-597.
|
31 |
Floyd JL, Smith KP, Kumar SH, et al. LmrS Is a Multidrug Efflux Pump of the Major Facilitator Superfamily from Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2010, 54(12): 5406-5412.
|
32 |
Billal DS, Feng J, Leprohon P, et al. Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations[J]. BMC Genomics, 2011, 12: 512.
|