切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2014, Vol. 02 ›› Issue (01) : 16 -20. doi: 10.3877/cma.j.issn.2095-5820.2014.01.004

综述

葡萄球菌对利奈唑胺耐药的现状及主要耐药机制
田月如1, 李敏2,()   
  1. 1.200040 上海,复旦大学附属华山医院检验医学科
    2.上海交通大学医学院附属仁济医院检验科
  • 收稿日期:2013-08-19 出版日期:2014-02-28
  • 通信作者: 李敏
  • 基金资助:
    国家自然基金资助项目(81171623,81261120387)上海市卫生系统优秀青年人才计划资助课题(XYQ2011039)上海市曙光人才计划资助项目(12SG03)

The situation of Staphylococci resistance to Linezolid and the mechanisms

Yueru Tian1, Min Li2,()   

  1. 1.Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai 200040, China
    2.Department of Laboratory Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
  • Received:2013-08-19 Published:2014-02-28
  • Corresponding author: Min Li
引用本文:

田月如, 李敏. 葡萄球菌对利奈唑胺耐药的现状及主要耐药机制[J/OL]. 中华临床实验室管理电子杂志, 2014, 02(01): 16-20.

Yueru Tian, Min Li. The situation of Staphylococci resistance to Linezolid and the mechanisms[J/OL]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2014, 02(01): 16-20.

利奈唑胺是第一个唑烷酮类抗菌药物,通过与细菌核糖体50S亚单位作用,抑制起始复合物的形成,而抑制细菌蛋白质合成。对葡萄球菌、链球菌、肠球菌等革兰阳性菌有很强的抗菌作用。目前,国内外已出现耐药葡萄球菌,耐药情况且呈上升趋势,特别是凝固酶阴性的葡萄球菌值得重视。耐药机制主要是细菌核糖体23S rRNA第V功能区基因突变,CFR基因的获得,编码50S核糖体蛋白L3、L4、L22的rplC、rplD、rplV的基因突变,23S rRNA修饰改变导致的耐药,LmrS多药外排泵,ABC蛋白过度表达等。

Linezolid is the first oxazolidinone antibiotic. It inhibits protein synthesis through binding to the 50S ribosomal subunit and imperiling the formation of initial complex. It has antibacterial function to many Gram-positive bacteria, including Staphylococci, Streptococci and Enterococci. Now, the Staphylococci resistant to Linezolid have been reported all over the world and the trend of resistance is increasing, especially for coagulasenegative Staphylococci. The resistance mechanisms have been mainly characterized: mutations in the domain V region of 23S rRNA genes, acquisition of the ribosomal methyltransferase gene CFR, mutations in the rplC, rplD,rplV gene encoding the 50S ribosomal protein L3, L4, L22 modifications of 23S rRNA multidrug efflux pump LmrS and overexpression of an ABC transporter and so on.

图1 噁唑烷酮类抗生素LZD的化学结构
1
Tsiodras S, GoldH S, Sakoulas G, et al. Linezolid resistance in a clinical isolate of Staphylococcus aureus[J]. Lancet, 2001, 358(9277):207-208.
2
Wilson P, Andrews JA, Charlesworth R, et al. Linezolid resistance in clinical isolates of Staphylococcus aureus[J]. J Antimicrob Chemother,2003, 51(1): 186-188.
3
Flamm RK, Farrell DJ, Mendes RE, et al. ZAAPS Program results for 2010: an activity and spectrum analysis of linezolid using clinical isolates from 75 medical centres in 24 countries[J]. J Chemother, 2012,24(6): 328-337.
4
Flamm RK, Mendes RE, Ross JE, et al. An international activity and spectrum analysis of linezolid: ZAAPS Program results for 2011[J].Diagn Microbiol Infect Dis, 2013, 76(2): 206-213.
5
Gu B, Kelesidis T, Tsiodras S, et al. The emerging problem of linezolid-resistant Staphylococcus[J]. J Antimicrob Chemother, 2013,68(1): 4-11.
6
Howe RA, Wootton M, Noel AR, et al. Activity of AZD2563, a novel oxazolidinone,against Staphylococcus aureus strains with reduced susceptibility to vancomycin or linezolid[J]. Antimicrob Agents Chemother, 2003, 47(11): 3651-3652.
7
Meka VG, Pillai SK, Sakoulas G, et al. Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23SrRNA gene and loss of a single copy of rRNA[J]. J Infect Dis, 2004, 190(2): 311-317.
8
Livermore DM, Warner M, Mushtaq S, et al. In vitro activity of the oxazolidinone RWJ-416457 against linezolid-resistant and -susceptible staphylococci and enterococci[J]. Antimicrob Agents Chemother,2007, 51(3): 1112-1114.
9
Livermore DM, Mushtaq S, Warner M, et al. Activity of oxazolidinone TR-700 against linezolid-susceptible and-resistant staphylococci and enterococci[J]. J Antimicrob Chemother, 2009, 63(4):713-715.
10
Hu YY, Zhang R, Zhou HW, et al. Linezolid-resistant clinical isolates of meticillin-resistant coagulase-negative staphylococci and Enterococcus faecium from China[J]. J Med Microbiol, 2012, 61(Pt 11): 1568-1573.
11
Besier S, Ludwig A, Zander J, et al. Linezolid resistance in Staphylococcus aureus: gene dosage effect, stability, fitness costs, and cross-resistances[J].Antimicrob Agents Chemother, 2008, 52(4): 1570-1572.
12
Schwarz S, Werckenthin C, Kehrenberg C. Identification of a plasmidborne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri[J]. Antimicrob Agents Chemother, 2000, 44(9): 2530-2533.
13
Kehrenberg C, Schwarz S, Jacobsen L, et al. A new mechanism for chloramphenicol, forfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503[J]. Mol Microbiol, 2005, 57(4): 1064-1073.
14
Toh SM, Xiong L, Arias CA, et al. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid[J]. Mol Microbiol,2007, 64(6): 1506-1514.
15
Shen J, Wang Y, Schwarz S.Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria[J]. J Antimicrob Chemother, 2013, 68(8): 1697- 1706.
16
Kehrenberg C, Schwarz S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates[J]. Antimicrob Agents Chemother, 2006, 50(4): 1156-1163.
17
Kehrenberg C, Cuny C, Strommenger B, et al. Methicillin-resistant and -susceptible Staphylococcus aureus strains of clonal lineages ST398 and ST9 from swine carry the multidrug resistance gene cfr[J].Antimicrob Agents Chemother, 2009, 53(2): 779-781.
18
Kehrenberg C, Aarestrup FM, Schwarz S. IS21-558 insertion sequences are involved in the mobility of the multiresistance gene cfr[J]. Antimicrob Agents Chemother, 2007, 51(2): 483- 487.
19
Wang Y, Zhang W, Wang J, et al. Distribution of the multidrug resistance gene cfr in Staphylococcus species isolates from swine farms in China[J]. Antimicrob Agents Chemother, 2012, 56(3): 1485-1490.
20
Wang XM, Zhang WJ, Schwarz S, et al. Methicillin-resistant Staphylococcus aureus ST9 from a case of bovine mastitis carries the genes cfr and erm(A) on a small plasmid[J]. J Antimicrob Chemother,2012, 67(5): 1287-1289.
21
Wang Y, He T, Schwarz S, et al. Multidrug resistance gene cfr in methicillin-resistant coagulase-negative staphylococci from chickens[J]. Int J Med Microbiol, 2013, 303(2): 84-87.
22
Yang XJ, Chen Y, Yang Q, et al. Emergence of cfr-harboring coagulase-negative Staphylococci among patients received linezolid therapy in two hospitals of China[J]. J Med Microbiol, 2013, 62(Pt 6):845-850.
23
Chen H, Wu W, Ni M, et al. Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms[J]. Int J Antimicrob Agents, 2013, 42(4): 317-321.
24
Locke JB, Hilgers M, Shaw KJ. Mutations in ribosomal protein L3 are associated with oxazolidinone resistance in staphylococci of clinical origin. Antimicrob[J]. Agents Chemother, 2009, 53(12): 5275-5278.
25
Locke JB, Hilgers M, Shaw KJ. Novel Ribosomal Mutations in Staphylococcus aureus Strains Identified through Selection with the Oxazolidinones Linezolid and Torezolid(TR-700)[J]. Antimicrob Agents Chemother, 2009, 53(12): 5265-5274.
26
de Almeida LM, de Araújo MR, Sacramento AG, et al. Linezolid resistance in Brazilian Staphylococcus hominis strains is associated with L3 and 23S rRNA ribosomal Mutations[J]. Antimicrob Agents Chemother, 2013, 57(8): 4082-4083.
27
Cui L, Wang Y, Li Y, et al. 2013Cfr-mediated linezolid-resistance among methicillin-resistant coagulase-negative Staphylococci from infections of humans[J]. PLoS One, 2013, 8(2): e57096.
28
Román F, Roldán C, Trincado P, et al. Detection of Linezolid-Resistant Staphylococcus aureus with 23S rRNA and Novel L4 Riboprotein Mutations in a Cystic Fibrosis Patient in Spain[J]. Antimicrob Agents Chemother, 2013, 57(5):2428-2429.
29
LaMarre JM, Howden BP, Mankin AS. Inactivation of the indigenous methyltransferase RlmN in Staphylococcus aureus increases linezolid resistance. Antimicrob[J]. Agents Chemother, 2011, 55(6): 2989-2991.
30
Toh SM, Mankin AS. An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors[J]. J Mol Biol, 2008, 380(4): 593-597.
31
Floyd JL, Smith KP, Kumar SH, et al. LmrS Is a Multidrug Efflux Pump of the Major Facilitator Superfamily from Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2010, 54(12): 5406-5412.
32
Billal DS, Feng J, Leprohon P, et al. Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations[J]. BMC Genomics, 2011, 12: 512.
[1] 张利, 张阳, 马菁菁, 喻哲昊, 葛亮, 孙林春. 细胞壁锚定蛋白SasX调控RNAⅢ参与金黄色葡萄球菌ST239克隆生物膜形成及致病性相关研究[J/OL]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 252-259.
[2] 王淑慧, 刘海英, 林敏纯, 谌亚星, 邓秋连, 钟华敏, 关小珊, 姚淑雯, 曾兰兰. 血培养阳性报警时间联合未成熟粒细胞及C反应蛋白鉴别儿童凝固酶阴性葡萄球菌血流感染与污染[J/OL]. 中华实验和临床感染病杂志(电子版), 2021, 15(01): 60-66.
[3] 马健. 利奈唑胺耐药头状葡萄球菌血流感染菌种及药敏试验分析[J/OL]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 433-436.
[4] 冯洒然, 李德志, 林殿杰, 朱玲. 金黄色葡萄球菌和纤维连接蛋白结合蛋白A对血管内皮细胞紧密连接的破坏作用[J/OL]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 411-417.
[5] 李冠东, 梁文启, 孙兴成, 王美堂. 利奈唑胺治疗G肺炎疗效及对免疫功能和炎症反应的影响[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(05): 700-702.
[6] 丁菡, 李翼. N-乙酰半胱氨酸联合利奈唑胺对肺结核患者呼吸功能、肺组织中B、T淋巴细胞衰减子表达的影响[J/OL]. 中华肺部疾病杂志(电子版), 2021, 14(04): 475-477.
[7] 邢磊, 史镜琪, 李荣艳, 刘静, 刘建伟, 叶玲, 张明华, 范皎. 基于转录组测序分析人大细胞肺癌NCI-H460细胞对类泛素化抑制剂MLN4924的潜在耐药机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 1-10.
[8] 张童童, 陈伟, 于溯洋, 赵士彭. 结直肠癌PD-1/PD-L1阻断治疗的耐药研究现状[J/OL]. 中华结直肠疾病电子杂志, 2021, 10(02): 205-210.
[9] 黄匀, 明静, 龚晨晨, 钟剑敏, 刘旭, 付建宇, 毕红英, 方慧, 唐艳, 刘媛怡, 王迪芬. 重度骨髓抑制致导管源性空洞型重症金黄色葡萄球菌肺炎一例[J/OL]. 中华重症医学电子杂志, 2021, 07(03): 282-284.
[10] 徐靖亭, 孔璐. PARP抑制剂治疗卵巢癌的耐药机制及应对策略[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 584-588.
[11] 蒲洁琨, 褚明娟, 庞茜茜, 张志华, 张鹤鸣, 汤建华. 张家口地区碳青霉烯耐药铜绿假单胞菌耐药性及其机制分析[J/OL]. 中华临床医师杂志(电子版), 2023, 17(12): 1291-1296.
[12] 林舒楠, 党文强, 钟天, 梁斯欣, 张磊, 唐晓华, 袁文常. 2017—2021年广东地区基层医疗机构金黄色葡萄球菌临床分离株耐药谱分析[J/OL]. 中华临床实验室管理电子杂志, 2023, 11(03): 139-144.
[13] 孙丹, 姬会春, 祝宇翀, 单宇, 刘军权, 廖雨琴. 三叶青提取物TH-w3对金黄色葡萄球菌生物膜的抑制和清除作用[J/OL]. 中华临床实验室管理电子杂志, 2022, 10(04): 227-232.
[14] 梁慧玲, 韩超, 郑琳颖, 黄桢, 高东华. 翘芩清肺剂对肺炎克雷伯菌和金黄色葡萄球菌的抑菌效果初探[J/OL]. 中华临床实验室管理电子杂志, 2022, 10(01): 13-16.
[15] 王昊, 明倩文, 王斌, 卢太坤, 张海宁. 利奈唑胺致黑毛舌的临床诊断学特征[J/OL]. 中华诊断学电子杂志, 2023, 11(04): 254-260.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?