切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2015, Vol. 03 ›› Issue (04) : 207 -211. doi: 10.3877/cma.j.issn.2095-5820.2015.04.004

所属专题: 文献

综述

骨髓抑制性细胞在肿瘤调节中的作用
高兴辉, 吴炯, 郭玮   
  • 收稿日期:2015-12-02 出版日期:2015-11-28
  • 通信作者: 郭玮
  • 基金资助:
    国家自然科学基金资助项目(81572064)

Research progress of myeloid-derived suppressor cell in tumor regulation

Xinghui GAO, Jiong WU, Wei GUO   

  • Received:2015-12-02 Published:2015-11-28
  • Corresponding author: Wei GUO
  • About author:
    Corresponding author: Guo Wei, Email:
引用本文:

高兴辉, 吴炯, 郭玮. 骨髓抑制性细胞在肿瘤调节中的作用[J]. 中华临床实验室管理电子杂志, 2015, 03(04): 207-211.

Xinghui GAO, Jiong WU, Wei GUO. Research progress of myeloid-derived suppressor cell in tumor regulation[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2015, 03(04): 207-211.

骨髓抑制性细胞 (myeloid-derived suppressor cell,MDSC) 是一群异质性细胞群体,具有强大的免疫抑制活性,能够抑制T淋巴细胞活化和增殖。MDSC在感染、自身免疫性疾病、骨髓移植中呈现募集增多,同时参与免疫逃逸、免疫耐受、炎性反应等病理过程。最近研究发现MDSC参与肿瘤生长、免疫耐受、免疫逃逸和肿瘤转移过程。现对MDSC在肿瘤调节中的研究进展进行阐述。

Myeloid-derived suppressor cell(MDSC), which is a heterogeneous population comprising immature myeloid cell with strong immunosuppressive activity, can inhibit T cell activation and proliferation. MDSC is not only increased in pathologic conditions, such as infection, autoimmune disease, bone marrow transplant present, but also involved in pathological process of immune escape, immune tolerance and inflammatory reaction. Recent studies found that MDSC was involved in tumor growth, immune tolerance, immune escape and tumor metastasis process. This review represents research progress of MDSC in tumor regulation.

[1]
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol, 2009, 9(3):162–174.
[2]
Zhao W, Xu Y, Xu J, et al. Subsets of myeloid-derived suppressor cells in hepatocellular carcinoma express chemokines and chemokine receptors differentially[J]. Int Immunopharmacol, 2015, 26(2):314–321.
[3]
Keskinov AA, Shurin MR. Myeloid regulatory cells in tumor spreading and metastasis[J]. Immunobiology, 2015, 220(2):236–242.
[4]
Zhang H, Li ZL, Ye SB, et al. Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator[J]. Cancer Immunol Immunother, 2015.[Epub ahead of print]
[5]
Zhang B, Wang Z, Wu L, et al. Circulating and tumor-infiltrating myeloid-derived suppressor cells in patientswith colorectal carcinoma[J]. PLoS One, 2013, 8(2):e57114.
[6]
Huang H, Zhang G, Li G, et al. Circulating CD14(+)HLA-DR(-/low) myeloid-derived suppressor cell is an indicator of poor prognosis in patients with ESCC[J]. Tumour Biol, 2015, 36(10):7987–7996.
[7]
Tian T, Gu X, Zhang B, et al. Increased circulating CD14(+)HLA-DR-/low myeloid-derived suppressor cells are associated with poor prognosis in patients with small-cell lung cancer[J]. Cancer Biomark, 2015, 15(4):425–432.
[8]
Wang Z, Zhang L, Wang H, et al. Tumor-induced CD14+HLA-DR (-/low) myeloid-derived suppressor cells correlate with tumor progression and outcome of therapy in multiple myeloma patients[J]. Cancer Immunol Immunother, 2015, 64(3):389–399.
[9]
Arihara F, Mizukoshi E, Kitahara M, et al. Increase in CD14+HLA-DR -/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis[J]. Cancer Immunol Immunother, 2013, 62(8):1421–1430.
[10]
Li G, Wu K, Tao K, et al. Vasoactive intestinal peptide induces CD14+HLA-DR-/low myeloid-derived suppressor cells in gastric cancer[J]. Mol Med Rep, 2015, 12(1):760–768.
[11]
Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells[J]. Nat Rev Cancer, 2013, 13(10):739–752.
[12]
Chen MF, Kuan FC, Yen TC, et al. IL-6-stimulated CD11b+ CD14+ HLA-DR-myeloid-derived suppressor cells, are associated with progression and poor prognosis in squamous cell carcinoma of the esophagus[J]. Oncotarget, 2014, 5(18):8716–8728.
[13]
Oh K, Lee OY, Shon SY, et al. A mutual activation loop between breast cancer cells and myeloid-derived suppressor cells facilitates spontaneous metastasis through IL-6 trans-signaling in a murine model[J]. Breast Cancer Res, 2013, 15(5):R79.
[14]
Ma S, Cheng Q, Cai Y, et al. IL-17A produced by γδ T cells promotes tumor growth in hepatocellular carcinoma[J]. Cancer Res, 2014, 74(7):1969–1982.
[15]
Highfill SL, Cui Y, Giles AJ, et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy[J]. Sci Transl Med, 2014, 6(237):237ra67.
[16]
Balwit JM, Hwu P, Urba WJ, et al. The iSBTc/SITC primer on tumor immunology and biological therapy of cancer: a summary of the 2010 program[J]. J Transl Med, 2011, 9:18.
[17]
Li H, Han Y, Guo Q, et al. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1[J]. J Immunol, 2009, 182(1):240–249.
[18]
Sumida K, Wakita D, Narita Y, et al. Anti-IL-6 receptor mAb eliminates myeloid-derived suppressor cells and inhibits tumor growth by enhancing T-cell responses[J]. Eur J Immunol, 2012, 42(8):2060–2072.
[19]
Ding Y, Shen J, Zhang G, et al. CD40 controls CXCR5-induced recruitment of myeloid-derived suppressor cells to gastric cancer[J]. Oncotarget, 2015, 6(36):38901–38911.
[20]
Stenvold H, Donnem T, Andersen S, et al. Overexpression of matrix metalloproteinase-7 and -9 in NSCLC tumor and stromal cells: correlation with a favorable clinical outcome[J]. Lung Cancer, 2012, 75(2):235–241.
[21]
Liu Y, Lai L, Chen Q, et al. MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN[J]. J Immunol, 2012, 188(11):5500–5510.
[22]
Corzo CA, Condamine T, Lu L, et al. HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment[J]. J Exp Med, 2010, 207(11):2439–2453.
[23]
Guedez L, Jensen-Taubman S, Bourboulia D, et al. TIMP-2 targets tumor-associated myeloid suppressor cells with effects in cancer immune dysfunction and angiogenesis[J]. J Immunother, 2012, 35(6):502–512.
[24]
Forrester E, Chytil A, Bierie B, et al. Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis[J]. Cancer Res, 2005, 65(6):2296–2302.
[25]
De Sanctis F, Solito S, Ugel S, et al. MDSC in cancer: Conceiving new prognostic and therapeutic targets[J]. Biochim Biophys Acta, 2015. [Epub ahead of print]
[26]
Nishie A, Ono M, Shono T, et al. Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas[J]. Clin Cancer Res, 1999, 5(5):1107–1113.
[27]
Marçola M, Rodrigues CE. Endothelial progenitor cells in tumor angiogenesis: another brick in the wall[J]. Stem Cells Int, 2015, 2015:832649
[28]
Dome B, Timar J, Dobos J, et al. Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer[J]. Cancer Res, 2006, 66(14):7341–7347.
[29]
Mulligan JK, Rosenzweig SA, Young MR. Tumor secretion of VEGF induces endothelial cells to suppress T cell functions through the production of PGE2[J]. J Immunother, 2010, 33(2):126–135.
[30]
Madlambayan GJ, Butler JM, Hosaka K, et al. Bone marrow stem and progenitor cell contribution to neovasculogenesis is dependent on model system with SDF-1 as a permissive trigger[J]. Blood, 2009, 114(19):4310–4319.
[31]
Li B, Vincent A, Cates J, et al. Low levels of tumor necrosis factor alpha increase tumor growth by inducing an endothelial phenotype of monocytes recruited to the tumor site[J]. Cancer Res, 2009, 69(1):338–348.
[32]
Huang S, Tang Y, Cai X, et al. Celastrol inhibits vasculogenesis by suppressing the VEGF-induced functional activity of bone marrow-derived endothelial progenitor cells[J]. Biochem Biophys Res Commun, 2012, 423(3):467–472.
[33]
Solito S, Marigo I, Pinton L, et al. Myeloid-derived suppressor cell heterogeneity in human cancers[J]. Ann N Y Acad Sci, 2014, 1319:47–65.
[34]
Srivastava MK, Sinha P, Clements VK, et al. Myeloid derive suppressor cells inhibitT cell activation by depleting cystine and cysteine[J]. Cancer Res, 2010, 70(1):68–77.
[35]
Draghiciu O, Lubbers J, Nijman HW, et al. Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy[J]. Oncoimmunology, 2015, 4(1):e954829.
[36]
Lindau D, Gielen P, Kroesen M, et al. The immunosuppressive tumournetwork: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells[J]. Immunology, 2013, 138(2):105–115.
[37]
Waldron TJ, Quatromoni JG, Karakasheva TA, et al. Myeloid derived suppressor cells: Targets for therapy[J]. Oncoimmunology, 2013, 2(4):e24117.
[38]
Najjar YG, Finke JH. Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer[J]. Front Oncol, 2013, 3:49.
[39]
Ugel S, Peranzoni E, Desantis G, et al. Immune tolerance to tumor antigens occurs in a specialized environment of thespleen[J]. Cell Rep, 2012, 2(3):628–639
[40]
Mirza N, Fishman M, Fricke I, et al. All-trans-retinoic acid improves differentiation ofmyeloid cells and immune response in cancer patients[J]. Cancer Res, 2006, 66(18):9299–9307.
[41]
Veltman JD, Lambers ME, van Nimwegen M, et al. Zoledronic acid impairs myeloid differentiationto tumour-associated macrophages in mesothelioma[J]. Br J Cancer, 2010, 103(5):629–641.
[42]
Roth F, De La Fuente AC, Vella JL, et al. Aptamer-mediated blockadeof IL4Rα triggers apoptosis of MDSC and limitstumor progression[J]. Cancer Res, 2012, 72(6):1373–1383.
[43]
Liu B, Qu L, Yan S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity[J]. Cancer Cell Int, 2015, 15:106.
[44]
Mao Y, Sarhan D, Steven A, et al. Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity[J]. Clin Cancer Res, 2014, 20(15):4096–4106.
[45]
Talmadge JE, Hood KC, Zobel LC, et al. Chemoprevention by cyclooxygenase-2inhibition reduces immature myeloid suppressorcell expansion[J]. Int Immunopharmacol, 2007, 7(2):140–151.
[46]
Veltman JD, Lambers ME, van Nimwegen M, et al. COX-2 inhibition improvesimmunotherapy and is associated withdecreased numbers of myeloid-derived suppressor cellsin mesothelioma. Celecoxib influences MDSC function[J]. BMC Cancer, 2010, 10:464.
[47]
Nefedova Y, Fishman M, Sherman S, et al. Mechanism of all-trans retinoic acideffect on tumor-associated myeloid-derived suppressorcells[J]. Cancer Res, 2007, 67(22):11021–11028.
[48]
Kusmartsev S, Cheng F, Yu B, et al. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination[J]. Cancer Res, 2003, 63(15):4441–4449.
[49]
Lathers DM, Clark JI, Achille NJ, et al. Phase IB study to improve immuneresponses in head and neck cancer patients using escalating doses of 25hydroxyvitamin D3[J]. Cancer Immuno limmunother, 2004, 53(5):422–430.
[1] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[2] 燕速, 霍博文, 徐惠宁. 4K荧光腹腔镜扩大右半结肠CME+D3根治术及No.206、No.204组淋巴结清扫术[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 14-14.
[3] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[4] 杜晓辉, 崔建新. 腹腔镜右半结肠癌D3根治术淋巴结清扫范围与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 5-8.
[5] 周岩冰, 刘晓东. 腹腔镜右半结肠癌D3根治术消化道吻合重建方式的选择[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 9-13.
[6] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[7] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[8] 张焱辉, 张蛟, 朱志贤. 留置肛管在中低位直肠癌新辅助放化疗后腹腔镜TME术中的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 25-28.
[9] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[10] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[11] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[12] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[13] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[14] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[15] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
阅读次数
全文


摘要