切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2015, Vol. 03 ›› Issue (04) : 207 -211. doi: 10.3877/cma.j.issn.2095-5820.2015.04.004

所属专题: 文献

综述

骨髓抑制性细胞在肿瘤调节中的作用
高兴辉, 吴炯, 郭玮   
  • 收稿日期:2015-12-02 出版日期:2015-11-28
  • 通信作者: 郭玮
  • 基金资助:
    国家自然科学基金资助项目(81572064)

Research progress of myeloid-derived suppressor cell in tumor regulation

Xinghui GAO, Jiong WU, Wei GUO   

  • Received:2015-12-02 Published:2015-11-28
  • Corresponding author: Wei GUO
  • About author:
    Corresponding author: Guo Wei, Email:
引用本文:

高兴辉, 吴炯, 郭玮. 骨髓抑制性细胞在肿瘤调节中的作用[J/OL]. 中华临床实验室管理电子杂志, 2015, 03(04): 207-211.

Xinghui GAO, Jiong WU, Wei GUO. Research progress of myeloid-derived suppressor cell in tumor regulation[J/OL]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2015, 03(04): 207-211.

骨髓抑制性细胞 (myeloid-derived suppressor cell,MDSC) 是一群异质性细胞群体,具有强大的免疫抑制活性,能够抑制T淋巴细胞活化和增殖。MDSC在感染、自身免疫性疾病、骨髓移植中呈现募集增多,同时参与免疫逃逸、免疫耐受、炎性反应等病理过程。最近研究发现MDSC参与肿瘤生长、免疫耐受、免疫逃逸和肿瘤转移过程。现对MDSC在肿瘤调节中的研究进展进行阐述。

Myeloid-derived suppressor cell(MDSC), which is a heterogeneous population comprising immature myeloid cell with strong immunosuppressive activity, can inhibit T cell activation and proliferation. MDSC is not only increased in pathologic conditions, such as infection, autoimmune disease, bone marrow transplant present, but also involved in pathological process of immune escape, immune tolerance and inflammatory reaction. Recent studies found that MDSC was involved in tumor growth, immune tolerance, immune escape and tumor metastasis process. This review represents research progress of MDSC in tumor regulation.

[1]
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol, 2009, 9(3):162–174.
[2]
Zhao W, Xu Y, Xu J, et al. Subsets of myeloid-derived suppressor cells in hepatocellular carcinoma express chemokines and chemokine receptors differentially[J]. Int Immunopharmacol, 2015, 26(2):314–321.
[3]
Keskinov AA, Shurin MR. Myeloid regulatory cells in tumor spreading and metastasis[J]. Immunobiology, 2015, 220(2):236–242.
[4]
Zhang H, Li ZL, Ye SB, et al. Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator[J]. Cancer Immunol Immunother, 2015.[Epub ahead of print]
[5]
Zhang B, Wang Z, Wu L, et al. Circulating and tumor-infiltrating myeloid-derived suppressor cells in patientswith colorectal carcinoma[J]. PLoS One, 2013, 8(2):e57114.
[6]
Huang H, Zhang G, Li G, et al. Circulating CD14(+)HLA-DR(-/low) myeloid-derived suppressor cell is an indicator of poor prognosis in patients with ESCC[J]. Tumour Biol, 2015, 36(10):7987–7996.
[7]
Tian T, Gu X, Zhang B, et al. Increased circulating CD14(+)HLA-DR-/low myeloid-derived suppressor cells are associated with poor prognosis in patients with small-cell lung cancer[J]. Cancer Biomark, 2015, 15(4):425–432.
[8]
Wang Z, Zhang L, Wang H, et al. Tumor-induced CD14+HLA-DR (-/low) myeloid-derived suppressor cells correlate with tumor progression and outcome of therapy in multiple myeloma patients[J]. Cancer Immunol Immunother, 2015, 64(3):389–399.
[9]
Arihara F, Mizukoshi E, Kitahara M, et al. Increase in CD14+HLA-DR -/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis[J]. Cancer Immunol Immunother, 2013, 62(8):1421–1430.
[10]
Li G, Wu K, Tao K, et al. Vasoactive intestinal peptide induces CD14+HLA-DR-/low myeloid-derived suppressor cells in gastric cancer[J]. Mol Med Rep, 2015, 12(1):760–768.
[11]
Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells[J]. Nat Rev Cancer, 2013, 13(10):739–752.
[12]
Chen MF, Kuan FC, Yen TC, et al. IL-6-stimulated CD11b+ CD14+ HLA-DR-myeloid-derived suppressor cells, are associated with progression and poor prognosis in squamous cell carcinoma of the esophagus[J]. Oncotarget, 2014, 5(18):8716–8728.
[13]
Oh K, Lee OY, Shon SY, et al. A mutual activation loop between breast cancer cells and myeloid-derived suppressor cells facilitates spontaneous metastasis through IL-6 trans-signaling in a murine model[J]. Breast Cancer Res, 2013, 15(5):R79.
[14]
Ma S, Cheng Q, Cai Y, et al. IL-17A produced by γδ T cells promotes tumor growth in hepatocellular carcinoma[J]. Cancer Res, 2014, 74(7):1969–1982.
[15]
Highfill SL, Cui Y, Giles AJ, et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy[J]. Sci Transl Med, 2014, 6(237):237ra67.
[16]
Balwit JM, Hwu P, Urba WJ, et al. The iSBTc/SITC primer on tumor immunology and biological therapy of cancer: a summary of the 2010 program[J]. J Transl Med, 2011, 9:18.
[17]
Li H, Han Y, Guo Q, et al. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1[J]. J Immunol, 2009, 182(1):240–249.
[18]
Sumida K, Wakita D, Narita Y, et al. Anti-IL-6 receptor mAb eliminates myeloid-derived suppressor cells and inhibits tumor growth by enhancing T-cell responses[J]. Eur J Immunol, 2012, 42(8):2060–2072.
[19]
Ding Y, Shen J, Zhang G, et al. CD40 controls CXCR5-induced recruitment of myeloid-derived suppressor cells to gastric cancer[J]. Oncotarget, 2015, 6(36):38901–38911.
[20]
Stenvold H, Donnem T, Andersen S, et al. Overexpression of matrix metalloproteinase-7 and -9 in NSCLC tumor and stromal cells: correlation with a favorable clinical outcome[J]. Lung Cancer, 2012, 75(2):235–241.
[21]
Liu Y, Lai L, Chen Q, et al. MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN[J]. J Immunol, 2012, 188(11):5500–5510.
[22]
Corzo CA, Condamine T, Lu L, et al. HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment[J]. J Exp Med, 2010, 207(11):2439–2453.
[23]
Guedez L, Jensen-Taubman S, Bourboulia D, et al. TIMP-2 targets tumor-associated myeloid suppressor cells with effects in cancer immune dysfunction and angiogenesis[J]. J Immunother, 2012, 35(6):502–512.
[24]
Forrester E, Chytil A, Bierie B, et al. Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis[J]. Cancer Res, 2005, 65(6):2296–2302.
[25]
De Sanctis F, Solito S, Ugel S, et al. MDSC in cancer: Conceiving new prognostic and therapeutic targets[J]. Biochim Biophys Acta, 2015. [Epub ahead of print]
[26]
Nishie A, Ono M, Shono T, et al. Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas[J]. Clin Cancer Res, 1999, 5(5):1107–1113.
[27]
Marçola M, Rodrigues CE. Endothelial progenitor cells in tumor angiogenesis: another brick in the wall[J]. Stem Cells Int, 2015, 2015:832649
[28]
Dome B, Timar J, Dobos J, et al. Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer[J]. Cancer Res, 2006, 66(14):7341–7347.
[29]
Mulligan JK, Rosenzweig SA, Young MR. Tumor secretion of VEGF induces endothelial cells to suppress T cell functions through the production of PGE2[J]. J Immunother, 2010, 33(2):126–135.
[30]
Madlambayan GJ, Butler JM, Hosaka K, et al. Bone marrow stem and progenitor cell contribution to neovasculogenesis is dependent on model system with SDF-1 as a permissive trigger[J]. Blood, 2009, 114(19):4310–4319.
[31]
Li B, Vincent A, Cates J, et al. Low levels of tumor necrosis factor alpha increase tumor growth by inducing an endothelial phenotype of monocytes recruited to the tumor site[J]. Cancer Res, 2009, 69(1):338–348.
[32]
Huang S, Tang Y, Cai X, et al. Celastrol inhibits vasculogenesis by suppressing the VEGF-induced functional activity of bone marrow-derived endothelial progenitor cells[J]. Biochem Biophys Res Commun, 2012, 423(3):467–472.
[33]
Solito S, Marigo I, Pinton L, et al. Myeloid-derived suppressor cell heterogeneity in human cancers[J]. Ann N Y Acad Sci, 2014, 1319:47–65.
[34]
Srivastava MK, Sinha P, Clements VK, et al. Myeloid derive suppressor cells inhibitT cell activation by depleting cystine and cysteine[J]. Cancer Res, 2010, 70(1):68–77.
[35]
Draghiciu O, Lubbers J, Nijman HW, et al. Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy[J]. Oncoimmunology, 2015, 4(1):e954829.
[36]
Lindau D, Gielen P, Kroesen M, et al. The immunosuppressive tumournetwork: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells[J]. Immunology, 2013, 138(2):105–115.
[37]
Waldron TJ, Quatromoni JG, Karakasheva TA, et al. Myeloid derived suppressor cells: Targets for therapy[J]. Oncoimmunology, 2013, 2(4):e24117.
[38]
Najjar YG, Finke JH. Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer[J]. Front Oncol, 2013, 3:49.
[39]
Ugel S, Peranzoni E, Desantis G, et al. Immune tolerance to tumor antigens occurs in a specialized environment of thespleen[J]. Cell Rep, 2012, 2(3):628–639
[40]
Mirza N, Fishman M, Fricke I, et al. All-trans-retinoic acid improves differentiation ofmyeloid cells and immune response in cancer patients[J]. Cancer Res, 2006, 66(18):9299–9307.
[41]
Veltman JD, Lambers ME, van Nimwegen M, et al. Zoledronic acid impairs myeloid differentiationto tumour-associated macrophages in mesothelioma[J]. Br J Cancer, 2010, 103(5):629–641.
[42]
Roth F, De La Fuente AC, Vella JL, et al. Aptamer-mediated blockadeof IL4Rα triggers apoptosis of MDSC and limitstumor progression[J]. Cancer Res, 2012, 72(6):1373–1383.
[43]
Liu B, Qu L, Yan S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity[J]. Cancer Cell Int, 2015, 15:106.
[44]
Mao Y, Sarhan D, Steven A, et al. Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity[J]. Clin Cancer Res, 2014, 20(15):4096–4106.
[45]
Talmadge JE, Hood KC, Zobel LC, et al. Chemoprevention by cyclooxygenase-2inhibition reduces immature myeloid suppressorcell expansion[J]. Int Immunopharmacol, 2007, 7(2):140–151.
[46]
Veltman JD, Lambers ME, van Nimwegen M, et al. COX-2 inhibition improvesimmunotherapy and is associated withdecreased numbers of myeloid-derived suppressor cellsin mesothelioma. Celecoxib influences MDSC function[J]. BMC Cancer, 2010, 10:464.
[47]
Nefedova Y, Fishman M, Sherman S, et al. Mechanism of all-trans retinoic acideffect on tumor-associated myeloid-derived suppressorcells[J]. Cancer Res, 2007, 67(22):11021–11028.
[48]
Kusmartsev S, Cheng F, Yu B, et al. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination[J]. Cancer Res, 2003, 63(15):4441–4449.
[49]
Lathers DM, Clark JI, Achille NJ, et al. Phase IB study to improve immuneresponses in head and neck cancer patients using escalating doses of 25hydroxyvitamin D3[J]. Cancer Immuno limmunother, 2004, 53(5):422–430.
[1] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[2] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[5] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[6] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[7] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[8] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[9] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[10] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[11] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[12] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[13] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[14] 刘柏隆, 周祥福. 压力性尿失禁阶梯治疗的项目介绍[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 125-125.
[15] 刘柏隆. 女性压力性尿失禁阶梯治疗之手术治疗方案选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 126-126.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?