切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2018, Vol. 06 ›› Issue (01) : 32 -38. doi: 10.3877/cma.j.issn.2095-5820.2018.01.009

所属专题: 文献

实验研究

MALDI-TOF MS鉴定一株小菌落变异型金黄色葡萄球菌
刘晔华1, 穆红1,(), 刘萍1, 江雁1, 张坚磊1   
  1. 1. 300192 天津市第一中心医院检验科
  • 收稿日期:2017-12-05 出版日期:2018-02-28
  • 通信作者: 穆红
  • 基金资助:
    卫生部国家临床重点专科建设项目资助项目(2013-544)

Identification of Staphylococcus aureus small colony variant by MALDI-TOF MS

Yehua Liu1, Hong Mu1,(), Ping Liu1, Yan Jiang1, Jianlei Zhang1   

  1. 1. Medical Laboratory Department, Tianjin First Central Hospital, Tianjin 300192, China
  • Received:2017-12-05 Published:2018-02-28
  • Corresponding author: Hong Mu
  • About author:
    Corresponding author: Mu Hong, Email:
引用本文:

刘晔华, 穆红, 刘萍, 江雁, 张坚磊. MALDI-TOF MS鉴定一株小菌落变异型金黄色葡萄球菌[J]. 中华临床实验室管理电子杂志, 2018, 06(01): 32-38.

Yehua Liu, Hong Mu, Ping Liu, Yan Jiang, Jianlei Zhang. Identification of Staphylococcus aureus small colony variant by MALDI-TOF MS[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2018, 06(01): 32-38.

目的

探讨运用基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption/ ionization time of flight mass spectrometry,MALDI-TOF MS)技术对金黄色葡萄球菌小菌落变异型的特征性蛋白指纹图谱进行深度研究的价值。

方法

分别采用传统生化鉴定、16S rRNA测序技术和MALDI-TOF MS技术对1株小菌落变异型金黄色葡萄球菌进行鉴定,通过质谱鉴定系统VITEK MS的质谱科研模式获取金黄色葡萄球菌小菌落突变株(small colony variants, SCV)的质谱图,分析代表金黄色葡萄球菌agr和sigB系统的m/z表达强度,并用SARAMIS软件构建基于质谱峰谱特征的系统发育树。

结果

使用MALDI-TOF MS技术鉴定该菌株为金黄色葡萄球菌,与传统生化鉴定、16S rRNA测序技术的鉴定结果一致。其菌落形态符合典型SCV菌株的特征,预示生物膜形成的PSMα3 (m/z 2634.4)、PSMα1(m/z 2286.8)和PSMα4(m/z 2198.6)的表达强度分别为100%、76.1%和32.3%,反映急性早期感染状态的agr调控系统的delta毒素强度只有10%;反映慢性、复发性感染的sigB调控系统的峰谱相对强度均<25%,该菌株和科研菌种库SCV的系统发育树近似度>70%。

结论

MALDI-TOF MS技术不仅能够快速准确鉴定不典型金黄色葡萄球菌,且生成的质谱图能够初步提示菌株在宿主体内的感染状态,表明该技术具有极大的应用前景。

Objective

To explore the feasibility of using matrix-assisted laser desorption/ ionization time of flight mass spectrometry (MALDI-TOF MS) to study the variation of Staphylococcus aureus colony, and to study the characteristic protein fingerprint of bacteria in depth.

Methods

Traditional biochemical identification, 16S rRNA gene sequencing and MALDI-TOF MS were used to identify the isolate. The MS for the Staphylococcus aureus SCV strain was obtained by vitek MS, and the m/z expression intensity of Staphylococcus aureus agr and sigB systems was analyzed. Phylogenetic tree based on peak spectrum of mass spectrum was constructed by SARAMIS software.

Results

The isolate was identified as Staphylococcus aureus by MALDI-TOF MS, the results obtained from the other two methods mentioned above including traditional biochemical identification and 16S rRNA gene seqencing were consistant with the MALDI-TOF MS. The colony morphology was in line with the characteristic of typical SCV strain, and the expression intensity related with biofilm formation was 100% for PSMα3 (m/z 2634.4); 76.1% for PSMα1 (m/z 2286.8) and 32.3% for PSMα4 (m/z 2198.6). The delta toxin intensity of agr regulatory system reflecting acute early infection was only 10%. The relative intensity of peak spectrum of sigB regulatory system reflecting chronic and recurrent infection was less than 25%. The phylogenetic tree approximation of the strain and SCV was more than 70%.

Conclusions

MALDI-TOF MS technology not only can identify the atypical Staphylococcus aureus, quickly and accurately, but also can preliminarily indicate the infection status of the strain in the host, and thus this technology has great application prospect.

图1 SCV菌落在血平板和MH平板的生长情况
表1 金黄色葡萄球菌在VITEK2 Compart的药敏结果
图2 16S rRNA的PCR扩增产物琼脂糖凝胶电泳图
表2 VITEK MS检测SW菌株的质谱图峰谱表达情况m/z值(%)
图3 53号菌株的质谱图
图4 质控菌株ATCC25923的质谱图
图5 质控菌株ATCC29213的质谱图
图6 基于SARAMIS?软件构建的金黄色葡萄球菌SARAMIS构建的系统发育树
1
Morelli P, De Alessandri A, Manno G, et al. Characterization of Staphylococcus aureus small colony variant strains isolated from Italian patients attending a regional cystic fibrosis care centre[J]. New Microbiol, 2015,38(2):235-243.
2
Proctor RA, Kriegeskorte A, Kahl BC, et al. Staphylococcus aureus Small Colony Variants (SCVs): a road map for the metabolic pathways involved in persistent infections[J]. Front Cell Infect Microbiol, 2014,4:991-998.
3
Bui LM, Turnidge JD, Kidd SP. The induction of Staphylococcus aureus biofilm formation or Small Colony Variants is a strain-specific response to host-generated chemical stresses[J]. Microbes Infect, 2015,17(1):77-82.
4
Josten M, Dischinger J, Szekat C, et al. Identification of agr-positive methicillin-resistant Staphylococcus aureus harbouring the class A mec complex by MALDI-TOF mass spectrometry[J]. Int J Med Microbiol, 2014,304(8):1018-1023.
5
Proctor RA, von Eiff C, Kahl BC, et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections[J]. Nat Rev Microbiol, 2006,4(4):295-305.
6
Masoud-Landgraf L, Zarfel G, Kaschnigg T, et al. Analysis and characterization of Staphylococcus aureus Small Colony Variants Isolated from Cystic Fibrosis Patients in Austria[J]. Curr Microbiol, 2016,72(5):606-611.
7
Yagci S, Hascelik G, Dogru D, et al. Prevalence and genetic diversity of Staphylococcus aureus smallcolony variants in cystic fibrosis patients[J]. Clin Microbiol Infect, 2013,19:77-84.
8
von Eiff C. Staphylococcus aureus small colony variants: a challenge to microbiologists and clinicians[J]. Int J Antimicrob Agents, 2008,31(6):507-510.
9
Crompton MJ, Dunstan RH, Macdonald MM, et al. Small changes in environmental parameters lead to alterations in antibiotic resistance, cell morphology and membrane fatty acid composition in Staphylococcus lugdunensis[J]. PLoS One, 2014,9(4):e92296.
10
Lannergård J, von Eiff C, Sander G, et al. Identification of the genetic basis for clinical menadione-auxotrophic small-colony variant isolates of Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2008,52:4017-4022.
11
Dean MA, Olsen RJ, Long SW, et al. Identification of point mutations in clinical Staphylococcus aureus strains that produce small colony variants auxotrophic for menadione[J]. Infect Immun, 2014,82:1600-1605.
12
Mayfield JA, Hammer ND, Kurker RC, et al. The chlorite dismutase (HemQ) from Staphylococcus aureus has a redox-sensitive heme and is associated with the small colony variant phenotype[J]. J Biol Chem, 2013,288(32):23488-23504.
13
Peschel A, Otto M. Phenol-soluble modulins and staphylococcal infection[J]. Nat Rev Microbiol, 2013,11(10):667-673.
14
Gagnaire J, Dauwalder O, Boisset S, et al. Detection of Staphylococcus aureus delta-toxin production by whole-cell MALDI-TOF mass spectrometry[J]. PLoS One, 2012,7(7):e40660.
15
Cervantes-García E, García-Gonzalez R, Reyes-Torres A, et al. Staphylococcus aureus small colony variants in diabetic foot infections[J]. Diabet Foot Ankle, 2015,6:26431-26435.
16
俞静,刘瑛,陈峰. 甲氧西林耐药的CO2依赖型金黄色葡萄球菌小菌落突变株的分离和鉴定[J]. 上海交通大学学报(医学版), 2012,32(10):1338-1342.
17
Valour F, Rasigade JP, Trouillet-Assant S, et al. Delta-toxin production deficiency in Staphylococcus aureus: a diagnostic marker of bone and joint infection chronicity linked with osteoblast invasion and biofilm formation[J]. Clin Microbiol Infect, 2015,21(6):568.e1-11.
18
Pader V, James EH, Painter KL, et al. The Agr quorum-sensing system regulated fibronectin binding but not hemolysis in the absence of a functional electron transport chain[J]. Infect Immun, 2014,82:4337-4347.
19
Lenhard JR, vonEiff C, HongI S, et al. Evolution of Staphylococcus aureus under vancomycin selective pressure: the role of the small-colony variant phenotype[J]. Antimicrob Agents Chemother, 2015,59(2):1347-1351.
20
Côté-Gravel J, Brouillette E, Obradović N, et al. Characterization of a vraG mutant in a genetically stable staphylococcus aureus small-colony variant and preliminary assessment for use as a live-attenuated vaccine against intrammamary infections[J]. PLoS One, 2016,11(11):e0166621.
[1] 张利, 张阳, 马菁菁, 喻哲昊, 葛亮, 孙林春. 细胞壁锚定蛋白SasX调控RNAⅢ参与金黄色葡萄球菌ST239克隆生物膜形成及致病性相关研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 252-259.
[2] 冯洒然, 李德志, 林殿杰, 朱玲. 金黄色葡萄球菌和纤维连接蛋白结合蛋白A对血管内皮细胞紧密连接的破坏作用[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 411-417.
[3] 胡振平, 许辉, 叶茂, 于静. 糖尿病足患者合并耐甲氧西林金黄色葡萄球菌感染的临床研究[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 380-385.
[4] 曹敬荣, 王岩, 谢威, 李文军, 陈典典, 段园园, 刘云屹, 闵嵘, 王培昌. 质谱技术快速鉴定临床分离丝状真菌的应用[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 374-379.
[5] 刘敏, 张凤香, 张萌, 尹作民. 重症医学科耐甲氧西林金黄色葡萄球菌肺部感染老年患者的药物治疗[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(05): 483-487.
[6] 谢俊杰, 孙恒彪, 潘祖汉, 尤旭, 叶育华. 1 245株金黄色葡萄球菌临床感染分布及耐药性变迁[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(01): 89-93.
[7] 张建, 杨梦琪, 翟京宇. 社区获得性金黄色葡萄球菌肺炎合并镰刀菌感染一例[J]. 中华肺部疾病杂志(电子版), 2019, 12(05): 652-654.
[8] 娄元华, 马化芹. 鞘内注射万古霉素治疗重型颅脑外伤开颅术后MRSA颅内感染的临床研究[J]. 中华神经创伤外科电子杂志, 2019, 05(06): 370-372.
[9] 杜霈, 秦瑾, 冯忠军, 郑翠影, 高伟, 宋珮瑶, 刘一冰. MRSA鼻腔筛查可排除MRSA手术部位感染:一项诊断实验meta分析[J]. 中华老年骨科与康复电子杂志, 2020, 06(03): 171-177.
[10] 黄匀, 明静, 龚晨晨, 钟剑敏, 刘旭, 付建宇, 毕红英, 方慧, 唐艳, 刘媛怡, 王迪芬. 重度骨髓抑制致导管源性空洞型重症金黄色葡萄球菌肺炎一例[J]. 中华重症医学电子杂志, 2021, 07(03): 282-284.
[11] 刘军. 耐甲氧西林金黄色葡萄球菌血流感染:关注感染来源和去路[J]. 中华重症医学电子杂志, 2019, 05(02): 109-114.
[12] 林舒楠, 党文强, 钟天, 梁斯欣, 张磊, 唐晓华, 袁文常. 2017—2021年广东地区基层医疗机构金黄色葡萄球菌临床分离株耐药谱分析[J]. 中华临床实验室管理电子杂志, 2023, 11(03): 139-144,150.
[13] 孙丹, 姬会春, 祝宇翀, 单宇, 刘军权, 廖雨琴. 三叶青提取物TH-w3对金黄色葡萄球菌生物膜的抑制和清除作用[J]. 中华临床实验室管理电子杂志, 2022, 10(04): 227-232.
[14] 梁慧玲, 韩超, 郑琳颖, 黄桢, 高东华. 翘芩清肺剂对肺炎克雷伯菌和金黄色葡萄球菌的抑菌效果初探[J]. 中华临床实验室管理电子杂志, 2022, 10(01): 13-16.
[15] 曹韪凡, 宋召, 周凤丽, 刘昕超, 马庆伟, 曹峰林. 两种菌体前处理方法对MALDI-TOF MS鉴定临床分离菌效果的影响[J]. 中华临床实验室管理电子杂志, 2018, 06(01): 27-31.
阅读次数
全文


摘要