切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2018, Vol. 06 ›› Issue (03) : 145 -152. doi: 10.3877/cma.j.issn.2095-5820.2018.03.004

所属专题: 文献

实验研究

曲古抑菌素A和多西他赛联合应用治疗前列腺肿瘤的实验研究
江佳佳1,(), 印金徐1, 郭佳倩1, 连雪琪1, 汤思洁2, 倪大光3, 黄灿1, 李晓华4,()   
  1. 1. 215600 苏州,江苏大学附属澳洋医院病理和检验医学中心
    2. 215600 苏州,江苏大学附属澳洋医院病理和检验医学中心;210029 南京,南京医科大学基础医学院
    3. 215600 苏州,江苏大学附属澳洋医院病理和检验医学中心;224000 江苏省盐城市第三人民医院放疗科
    4. 215600 苏州,江苏大学附属澳洋医院病理和检验医学中心;210029 南京,南京医科大学基础医学院;230088 合肥,国家基因检测技术应用示范中心(安徽);合肥金域医学检验所有限公司
  • 收稿日期:2018-03-12 出版日期:2018-08-28
  • 通信作者: 江佳佳, 李晓华
  • 基金资助:
    国家自然科学基金(81572741); 吴阶平医学基金会临床科研专项资助基金(320.6750.14120)

Evaluating the cytotoxicity of combination treatment with Trichostatin A and Docetaxel in prostate cancer chemotherapy

Jiajia Jiang1,(), Jingxu Yin1, Jiaqian Guo1, Xueqi Lian1, Sijie Tang2, Daguang Ni3, Can Huang1, Xiaohua Li4,()   

  1. 1. The Center for Pathology & Laboratory Medicine, the Affiliated Aoyang Hospital of Jiangsu University, Suzhou 215617, China
    2. The Center for Pathology & Laboratory Medicine, the Affiliated Aoyang Hospital of Jiangsu University, Suzhou 215617, China;School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
    3. The Center for Pathology & Laboratory Medicine, the Affiliated Aoyang Hospital of Jiangsu University, Suzhou 215617, China;Dept of Radiotherapy, the Third Peoples Hospital of Yancheng City, Jiangsu 224000, China
    4. The Center for Pathology & Laboratory Medicine, the Affiliated Aoyang Hospital of Jiangsu University, Suzhou 215617, China;School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China;National Center for Gene Testing Technology Application & Demonstration, Center for Cancer Diagnostics & Clinical Genomics, Hefei KingMed Diagnostics Co., Ltd, Hefei 230088, China
引用本文:

江佳佳, 印金徐, 郭佳倩, 连雪琪, 汤思洁, 倪大光, 黄灿, 李晓华. 曲古抑菌素A和多西他赛联合应用治疗前列腺肿瘤的实验研究[J/OL]. 中华临床实验室管理电子杂志, 2018, 06(03): 145-152.

Jiajia Jiang, Jingxu Yin, Jiaqian Guo, Xueqi Lian, Sijie Tang, Daguang Ni, Can Huang, Xiaohua Li. Evaluating the cytotoxicity of combination treatment with Trichostatin A and Docetaxel in prostate cancer chemotherapy[J/OL]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2018, 06(03): 145-152.

目的

研究组蛋白去乙酰化抑制药物与常用的紫杉类化疗药物联合应用对人类前列腺癌细胞的杀伤作用,探讨其可能的分子机制。

方法

用不同浓度的组蛋白去乙酰化抑制药物曲古抑菌素A(trichostatin A, TSA)和紫杉类化疗药物多西他赛(Docetaxel,DTX)分别处理DU145和22Rv1前列腺肿瘤细胞,体外观察二者对肿瘤细胞的细胞毒作用。采用水溶性四唑盐(water soluble tetrazolium,WST-1)法检测细胞的增殖抑制率;蛋白质免疫印迹(western blot,WB)检测细胞中DNA损伤标志物磷酸化H2A.X(p-H2A.X)和细胞凋亡标志蛋白聚ADP-核糖聚合酶(poly ADP-ribose polymerase,PARP)特异性裂解片段的表达水平;采用定量实时荧光聚合酶链反应(quantitative real-time fluorescence polymerase chain reaction,qRT-PCR)检测细胞中相关肿瘤抑制分子Maspin、p21CIP1/WAF1和Bax的转录表达水平。

结果

TSA和DTX对于前列腺肿瘤细胞增殖的抑制作用随着浓度升高而增强。TSA对DU145细胞的细胞毒作用(IC50=0.16 μM)较对22Rv1细胞(IC50=0.06 μM)弱。而DTX对DU145细胞的细胞毒作用则较对22Rv1细胞表现更显著。低剂量的TSA(0.01 μM,0.1 μM)能协同DTX抑制肿瘤细胞的增殖。DTX能诱导肿瘤细胞中的PARP分子产生细胞凋亡的特异性裂解、使p-H2A.X表达水平升高,并促进肿瘤抑制分子MASPIN、p21CIP1/WAF1和细胞凋亡分子Bax的转录表达。使用低剂量的TSA处理虽未见产生PARP的细胞凋亡特异性裂解片段和p-H2A.X表达升高,但促进DU145细胞表达maspin和Bax,也使22Rv1表达maspin和p21CIP1/WAF1升高。同时TSA协同DTX显著诱导DU145细胞转录表达maspin、p21CIP1/WAF1和Bax,协同诱导22Rv1细胞转录表达maspin和Bax分子。

结论

TSA和DTX均能抑制肿瘤细胞增殖。DTX处理能有效损伤肿瘤细胞的DNA,诱导肿瘤细胞凋亡。联合应用TSA和DTX可以显著提高抗肿瘤相关分子的表达。这种药物诱导的细胞毒作用可能是通过诱导肿瘤抑制基因的表达而发挥作用,并具有组织和细胞特异性。该结果为临床应用TSA和DTX药物干预和治疗前列腺肿瘤提供用药指导,同时也提醒临床医师用药时必须考虑患者的个体化差异。

Objective

To investigate the therapeutic efficacy of trichostatin A (TSA) in combination with Docetaxel (DTX) in human prostate cancer chemointervention through studying the cytotoxic effect in vitro, and the possible molecular mechanism.

Methods

Prostate cancer cells DU145 and 22Rv1 were treated with different doses of TSA or DTX respectively. The cytotoxic effect was evaluated by WST-1 assay. The PARP cleavage and level of phosphorylated H2A.X (p-H2A.X) were assessed by Western Blot. The genes expression of tumor suppressive maspin、p21CIP1/WAF1 and Bax were analyzed by reverse transcription followed by quantitative real-time PCR.

Results

The treatment with either TSA or DTX inhibited cell proliferation of prostate cancer DU145 and 22Rv1 cells with differential drug sensitivity. The cytotoxic effect of TSA on 22Rv1 cell (IC50=0.06 μM) was more significant than on DU145 cell (IC50=0.16 μM). But the cytotoxic effect of DTX on DU145 was more significant than on 22Rv1 cell. Combination treatment of TSA with DTX showed synergistic inhibitory effect on cell proliferation of both cell lines. Both PARP cleavage and p-H2A.X level were increased in DTX-induced cytotoxicity companied with increased expression of maspin and Bax in DU145 cells, and of maspin and p21CIP1/WAF1 in 22Rv1 cells. Treatment with sub-lethal concentration of TSA (0.1 μM) was able to promote DTX-induced expression of tumor suppressive maspin, p21CIP1/WAF1 and Bax in these two cell lines with a differential manner.

Conclusion

Treatment with TSA or DTX could inhibit the proliferation of prostate cancer DU145 and 22Rv1 cells. DTX treatment was able to induce apoptotic cell death. The combination treatment approach of TSA with DTX showed synergistic effects on increasing expression of tumor suppressive maspin, p21CIP1/WAF1 and Bax, which may be differentially indispensible to their cytotoxic effect.

图1 WST-1检测TSA抑制前列腺肿瘤细胞DU145和22Rv1增殖的细胞毒作用
图2 WST-1检测TSA和DTX或MMC抑制前列腺肿瘤细胞增殖的细胞毒作用
图3 Western-blot检测TSA和DTX诱导的PARP裂解和磷酸化H2A.X水平
图4 qRT-PCR检测TSA和DTX诱导抗肿瘤分子的表达
1
Mukherji D,Pezaro CJ,Shamseddine A, et al. New treatment developments applied to elderly patients with advanced prostate cancer[J]. Cancer Treat Rev, 2013,39(6):578-583.
2
Loriot Y,Zoubeidi A,G. ME. Targeted therapies in metastatic castration-resistant prostate cancer:beyond the androgen receptor[J]. Urol Clin North Am, 2012,39(4):517-531.
3
Wadosky KM,Koochekpour S. Molecular mechanisms underlying resistance to androgendeprivation therapy in prostate cancer[J]. Oncotarget, 2016,7(39):64447-64470.
4
Hoang DT,Iczkowski KA,Kilari D, et al. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles[J]. Oncotarget, 2017,8(2):3724-3745.
5
Ringel I,Horwitz SB. Studies with RP 56976 (taxotere): a semisynthetic analogue of taxol[J]. J Natl Cancer Inst, 1991,83(4):288-291.
6
Handy CE,Antonarakis ES. Sequencing treatment for castration-resistant prostate cancer[J]. Curr Treat Options Oncol, 2016,17(12):64.
7
Oh WK,Kantoff PW. Docetaxel(Taxotere)-based chemotherapy for hormone-refractory and locally advanced prostate cancer[J]. Semin Oncol, 1999,26(5Suppl17):49-54.
8
Yoo S,Choi SY,You D, et al.New drugs in prostate cancer[J]. Prostate Int, 2016,4(2):37-42.
9
Sun Y,Zou Q,Sun Z, et al. Abiraterone acetate for metastatic castration-resistant prostate cancer after docetaxel failure: A randomized, double-blind, placebo-controlled phase 3 bridging study[J]. Int J Urol, 2016,23(5):404-411.
10
Roos WP,Krumm A. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair[J]. Nucleic Acids Res, 2016,44(21):10017-10030.
11
De Souza C,Chatterji BP. HDAC Inhibitors as novel anti-cancer therapeutics[J]. Recent Pat Anticancer Drug Discov, 2015,10(2):145-162.
12
Marks PA,Richon VM,Breslow R, et al. Histone deacetylase inhibitors as new cancer drugs[J]. Curr Opin Oncol, 2001,13(6):477-483.
13
Greer CB,Tanaka Y,Kim YJ, et al. Histone deacetylases positively regulate transcription through the elongation machinery[J]. Cell Rep, 2015,13(7):1444-1455.
14
Kim YJ,Greer CB,Cecchini KR, et al. HDAC inhibitors induce transcriptional repression of high copy number genes in breast cancer through elongation blockade[J]. Oncogene, 2013,32(23):2828-2835.
15
Yoshida M,Kijima M,Akita M, et al. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A[J]. J Biol Chem, 1990,265(28):17174-17179.
16
Zhang Q,Sun M,Zhou S, et al. Class I HDAC inhibitor mocetinostat induces apoptosis by activation of miR-31 expression and suppression of E2F6[J]. Cell Death Discov, 2016,2:16036.
17
Hwang JJ,Kim YS,Kim MJ, et al. A novel histone deacetylase inhibitor, CG200745, potentiates anticancer effect of docetaxel in prostate cancer via decreasing Mcl-1 and Bcl-XL[J]. Invest New Drugs, 2012,30(4):1434-1442.
18
Hassig CA,Symons KT,Guo X, et al. KD5170, a novel mercaptoketone-based histone deacetylase inhibitor that exhibits broad spectrum antitumor activity in vitro and in vivo[J]. Mol Cancer Ther, 2008,7(5):1054-1065.
19
Li X,Kaplun A,Lonardo F, et al. HDAC1 inhibition by maspin abrogates epigenetic silencing of glutathione S-transferase pi in prostate carcinoma cells[J]. Mol Cancer Res, 2011,9(6):733-745.
20
Bai P. Biology of poly(ADP-Ribose) polymerases: The factotums of cell maintenance[J]. Mol Cell, 2015,58(6):947-958.
21
Sharma A,Singh K,Almasan A. Histone H2AX phosphorylation: a marker for DNA damage[J]. Methods Mol Biol, 2012,920:613-626.
22
Wang B,Yong H,Zhu H, et al. Abnormal amphiregulin expression correlates with gastric cancer prognosis[J]. Oncotarget, 2016,7(47): 76684-76692.
23
Li X,Yin S,Meng Y, et al. Endogenous inhibition of histone deacetylase 1 by tumor-suppressive maspin[J]. Cancer Res, 2006, 66(18):9323-9329.
24
Yin S,Li X,Meng Y, et al. Tumor-suppressive maspin regulates cell response to oxidative stress by direct interaction with glutathione S-transferase[J]. J Biol Chem, 2005,280(41):34985-34996.
25
Zou Z,Anisowicz A,Hendrix MJ, et al. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells[J]. Science, 1994,263(5146):526-529.
26
Thurn KT,Thomas S,Moore A, et al. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer[J]. Future Oncol, 2011,7(2):263-283.
27
Zhang QC,Jiang SJ,Zhang S, et al. Histone deacetylase inhibitor trichostatin A enhances anti-tumor effects of docetaxel or erlotinib in A549 cell line[J]. Asian Pac J Cancer Prev, 2012,13(7):3471-3476.
28
Chikamatsu K,Ishii H,Murata T, et al. Alteration of cancer stem cell-like phenotype by histone deacetylase inhibitors in squamous cell carcinoma of the head and neck[J]. Cancer Sci, 2013,104(11):1468-1475.
29
Biernacka KM,Uzoh CC,Zeng L, et al. Hyperglycaemia-induced chemoresistance of prostate cancer cells due to IGFBP2[J]. Endocr Relat Cancer, 2013,20(5):741-751.
30
Imesch P,Dedes KJ,Furlato M, et al. MLH1 protects from resistance acquisition by the histone deacetylase inhibitor trichostatin A in colon tumor cells[J]. Int J Oncol, 2009,35(3):631-640.
31
Scholpa NE,Kolli RT,Moore M, et al. Nephrotoxicity of epigenetic inhibitors used for the treatment of cancer[J]. Chem Biol Interact, 2016,258:21-29.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[3] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[4] 许杰, 李亚俊, 冯义文. SOX新辅助化疗后腹腔镜胃癌D2根治术与常规根治术治疗进展期胃癌的近期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 647-650.
[5] 薛庆, 施赛叶, 徐雅文, 盛夏, 张芹芹. 追踪方法学联合失效模式与效应分析在膀胱灌注化疗患者中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 553-559.
[6] 王岩, 钱宏阳, 朱寅杰, 董柏君, 潘家骅, 薛蔚. 机器人辅助单孔腹膜外根治性前列腺切除治疗高危前列腺癌的瘤控效果初探[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 435-440.
[7] 张昊, 潘卫东. 胰腺癌新辅助化疗后可切除性评估现状及进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 629-633.
[8] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[9] 石阳, 于剑锋, 曹可, 翟志伟, 叶春祥, 王振军, 韩加刚. 可扩张金属支架置入联合新辅助化疗治疗完全梗阻性左半结肠癌围手术期并发症分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 464-471.
[10] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[11] 赵磊, 刘文志, 林峰, 于剑, 孙铭骏, 崔佑刚, 张旭, 衣宇鹏, 于宝胜, 冯宁. 深部热疗在改善结直肠癌术后辅助化疗副反应及生活质量中的作用研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 488-493.
[12] 王哲学, 白峻阁, 姜得地, 李月刚, 杨明, 陈海鹏, 刘正. 局部进展期直肠癌经新辅助放化疗后肿瘤退缩分级及预后的影响因素分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 368-374.
[13] 张颖, 赵鑫, 陈佳梅, 李雁. 术前化疗对CRS+HIPEC 治疗腹膜假黏液瘤预后影响的meta 分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 826-835.
[14] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[15] 张梦婷, 穷拉姆, 色珍, 李逸群, 德庆旺姆. 西藏地区藏族乳腺癌新辅助化疗的真实世界研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 441-446.
阅读次数
全文


摘要