切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2019, Vol. 07 ›› Issue (04) : 193 -198. doi: 10.3877/cma.j.issn.2095-5820.2019.04.001

所属专题: 文献

卫生健康事业发展70年巡礼·专家论坛

人工智能技术在宫颈细胞筛查中的应用进展和挑战
车拴龙1, 刘栋1, 刘斯2, 罗丕福1,()   
  1. 1. 510005,广州金域医学检验中心病理中心
    2. 510005,广州金域医学检验中心大数据中心
  • 收稿日期:2019-08-14 出版日期:2019-11-28
  • 通信作者: 罗丕福
  • 基金资助:
    2017年广州市创新领军团队(No.201809010012)

Applicational progress and challenges of the artificial intelligence-aided cervical cancer cytological screening

Shuanlong Che1, Dong Liu1, Si Liu2, Pifu Luo1,()   

  1. 1. Pathology Center, Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou 51005, China
    2. Big Data Center, Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou 51005, China
  • Received:2019-08-14 Published:2019-11-28
  • Corresponding author: Pifu Luo
  • About author:
    Corresponding author: Luo Pifu, Email:
引用本文:

车拴龙, 刘栋, 刘斯, 罗丕福. 人工智能技术在宫颈细胞筛查中的应用进展和挑战[J]. 中华临床实验室管理电子杂志, 2019, 07(04): 193-198.

Shuanlong Che, Dong Liu, Si Liu, Pifu Luo. Applicational progress and challenges of the artificial intelligence-aided cervical cancer cytological screening[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2019, 07(04): 193-198.

子宫颈癌是女性最常见的恶性肿瘤之一,通过人类乳头瘤病毒(human papillomavirus,HPV)检测和宫颈细胞学筛查,进行早期诊断和早期治疗能够控制宫颈癌的发病和死亡。由于缺乏宫颈细胞筛查人员,使其收效甚微。人工智能(artificial intelligency,AI)技术应用宫颈癌筛查,可望提供最佳的解决方案。通过文献复习和归纳,本文阐述了AI辅助宫颈癌筛查的进展,包括不同的AI算法模型的利弊,人工筛查与AI辅助筛查之间不同的人机交互筛查工作模式和应用于场景;分析了目前AI辅助宫颈癌筛查的结果和应用优势;例举了开发AI辅助宫颈癌筛查中遇到的问题和挑战。旨在为开发和利用AI辅助宫颈细胞筛查提供借鉴和思考,促进AI辅助宫颈癌筛查产品早日落地和应用,减少我国宫颈癌的发病率和死亡率。

Cervical cancer is one of the most common malignant tumors in women. Early detection and treatment are critical to reduce its mobility and motality. Cytological screening combined with HPV test is the best way for its early detection. However, the early diagnosis is impeded due to severely lack of cytopathologists. The application of artificial intelligency (AI) technology in cervical cancer screening will provide the best solution to enhance the screening efficiency and quality. We reviewed literatures of the AI-aided cervical cancer screening, described its progress of AI algorithm models, human screening and AI-aided screening interactive models in the cervical cytology; described the Prons and Cons of different machine and deep learning algorithms based on the bright and dark rules; analyzed available results of the AI-aided cervical cancer screening, and diacussed problems and challenges in exploring and applying of the AI-aided cervical cancer screening products. The purpose of this review is to provide insights for the research and development of the AI-aided cervical cancer screening to promote its application and implementation, which will contribute to reduce the mobility and motality of cervical cancer.

图1 基于明规则与暗规则的人工智能算法
表1 基于明规则的机器学习算法
表2 基于暗规则的机器学习算法
图2 传统宫颈细胞筛查与多种人-机辅助筛查交互工作模式
1
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clini, 2018,68(6):394-424.
2
吕永金,谢沁玲,郑宝文,等. 子宫颈癌筛查大样本数据引发的思考[J/CD]. 中华临床实验室管理电子杂志, 2016,4(1):8-12.
3
上海交通大学人工智能研究院,上海市卫生和健康发展研究中心,上海交通大学医学院,等. 中国人工智能医疗白皮书[R]. 2019-1.
4
Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology[J]. Nat Rev Clin Oncol, [2019-08-09]. doi: 10.1038/s41571-019-0252-y. [Epub ahead of print].
5
Koss LG, Lin E, Schreiber K, et al. Evaluation of the PAPNET cytologic screening system for quality control of cervical smears[J]. Am J Clin Pathol, 1994,101(2):220-229.
6
中国医学影像AI产学研用创新联盟. 2019中国医学影像AI白皮书[R]. 2019-1.
7
Mariarputham EJ, Stephen A. Nominated texture based cervical cancer classification[J]. Comput Math Methods Med, 2015:586928.
8
Zhang J, Liu Z, Du B, et al. Binary tree-like network with two-path Fusion Attention Feature for cervical cell nucleus segmentation[J]. Comput Biol Med, 2019,108:223-233.
9
Komagata H, Ichimura T, Matsuta Y, et al. Feature analysis of cell nuclear chromatin distribution in support of cervical cytology[J]. J Med Imaging (Bellingham), 2017,4(4):047501.
10
廖欣,郑欣,邹娟,等. 基于神经网络集成模型的宫颈细胞病理计算机辅助诊断方法[J]. 液晶与显示, 2018,33(4):90-99.
11
Song Y, Zhang L, Chen S, et al. A deep learning based framework for accurate segmentation of cervical cytoplasm and nuclei[J]. Conf Proc IEEE Eng Med Biol Soc, 2014:2903-2906.
12
Zhi Lu, Carneiro G, Bradley AP. An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells[J]. IEEE Trans Image Process, 2015,24(4):1261-1272.
13
Zhao M, Wu A, Song J, et al. Automatic screening of cervical cells using block image processing[J]. Biomed Eng Online, 2016,15:14.
14
胡卉,蔡金清. 基于深度卷积神经网络的宫颈细胞涂片的病变细胞分类[J]. 软件工程, 2018,21(8):23-26.
15
郑欣,田博,李晶晶. 基于YOLO模型的宫颈细胞簇团智能识别方法[J]. 液晶与显示, 2018,33(11):64-70.
16
郑珂,张声,唐坚清. 计算机辅助阅片系统在宫颈细胞学筛查中的应用[J]. 诊断病理学杂志, 2015,22(6):364-366.
17
Keyhani-Rofagha S, Palma T, O’Toole RV. Automated screening for quality control using PAPNET: a study of 638 negative Pap smears[J]. Diagn Cytopathol, 1996 14(4):316-320.
18
Doornewaard H, van de Seijp H, Woudt JM, et al. Negative cervical smears before CIN 3/carcinoma. Reevaluation with the PAPNET Testing System[J]. Acta Cytol, 1997,41(1):74-78.
19
Kaufman RH, Schreiber K, Carter T. Analysis of atypical squamous (glandular) cells of undetermined significance smears by neural network-directed review[J]. Obstet Gynecol, 1998,91(4):556-560.
20
Wilbur DC, Black-Schaffer WS, Luff RD, et al. The Becton Dickinson Focal Point GS Imaging System: clinical trials demonstrate significantly improved sensitivity for the detection of important cervical lesions[J]. Am J Clin Pathol, 2009,132(5):767-775.
21
Zhang L, Le Lu, Nogues I, et al. DeepPap: Deep convolutional networks for cervical cell classification[J]. IEEE J Biomed Health Inform, 2017,21(6):1633-1643.
22
周东华,田杰,王夷黎,等. 计算机辅助阅片与单纯人工阅片在宫颈液基细胞学诊断中对比观察[J]. 临床与实验病理学杂志, 2013, 29(7):782-784.
23
Kok MR, Boon ME, Schreiner-Kok PG, et al. Cytological recognition of invasive squamous cancer of the uterine cervix: comparison of conventional light-microscopical screening and neural network-based screening[J]. Hum Pathol, 2000,31(1):23-28.
24
Duby JM, DiFurio MJ. Implementation of the ThinPrep Imaging System in a tertiary military medical center[J]. Cancer, 2009,117(4):264-270.
25
Lozano R. Comparison of computer-assisted and manual screening of cervical cytology[J]. Gynecol Oncol, 2007,104(1):134-138.
26
Halford JA, Batty T, Boost T, et al. Comparison of the sensitivity of conventional cytology and the ThinPrep Imaging System for 1,083 biopsy confirmed high-grade squamous lesions[J]. Diagn Cytopathol, 2010,38(5):318-326.
27
Kok MR, Habers MA, Schreiner-Kok PG, et al. New paradigm for ASCUS diagnosis using neural networks[J]. Diagn Cytopathol, 1998,19(5):361-366.
28
Chhieng DC, Elgert PA, Xiong Y, et al. Use of computer-assisted rescreening as an ancillary tool to subclassify AGUS cervical smears[J]. Diagn Cytopathol, 2000,23(3):165-170.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 杨菲菲, 林锡祥, 陈亦新, 王秋霜, 张丽伟, 陈煦, 张梅青, 王淑华, 何昆仑. 基于深度学习的超声心动图自动识别节段性室壁运动异常的研究[J]. 中华医学超声杂志(电子版), 2023, 20(04): 424-429.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 李锐颖, 危望, 王达志, 时志斌. 深度学习技术在膝关节疾病中的研究现状与展望[J]. 中华关节外科杂志(电子版), 2023, 17(05): 722-725.
[5] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[6] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[7] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[8] 胡博文, 戴英波. 泌尿外科机器人手术新趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 418-421.
[9] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[10] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[11] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[12] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[13] 陈显金, 吴芹芹, 何长春, 张庆华. 利用多模态医学数据和机器学习构建脑出血预后预测模型的研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 193-198.
[14] 郭震天, 张宗明, 赵月, 刘立民, 张翀, 刘卓, 齐晖, 田坤. 机器学习算法预测老年急性胆囊炎术后住院时间探索[J]. 中华临床医师杂志(电子版), 2023, 17(9): 955-961.
[15] 王俊杰, 尹晓亮, 刘二腾, 陆军, 祁鹏, 胡深, 杨希孟, 陈鲲鹏, 张东, 王大明. 机器学习对预测颈内动脉非急性闭塞患者血管内再通术成功的潜在价值[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 464-470.
阅读次数
全文


摘要