切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2019, Vol. 07 ›› Issue (04) : 193 -198. doi: 10.3877/cma.j.issn.2095-5820.2019.04.001

所属专题: 文献

卫生健康事业发展70年巡礼·专家论坛

人工智能技术在宫颈细胞筛查中的应用进展和挑战
车拴龙1, 刘栋1, 刘斯2, 罗丕福1,()   
  1. 1. 510005,广州金域医学检验中心病理中心
    2. 510005,广州金域医学检验中心大数据中心
  • 收稿日期:2019-08-14 出版日期:2019-11-28
  • 通信作者: 罗丕福
  • 基金资助:
    2017年广州市创新领军团队(No.201809010012)

Applicational progress and challenges of the artificial intelligence-aided cervical cancer cytological screening

Shuanlong Che1, Dong Liu1, Si Liu2, Pifu Luo1,()   

  1. 1. Pathology Center, Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou 51005, China
    2. Big Data Center, Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou 51005, China
  • Received:2019-08-14 Published:2019-11-28
  • Corresponding author: Pifu Luo
  • About author:
    Corresponding author: Luo Pifu, Email:
引用本文:

车拴龙, 刘栋, 刘斯, 罗丕福. 人工智能技术在宫颈细胞筛查中的应用进展和挑战[J/OL]. 中华临床实验室管理电子杂志, 2019, 07(04): 193-198.

Shuanlong Che, Dong Liu, Si Liu, Pifu Luo. Applicational progress and challenges of the artificial intelligence-aided cervical cancer cytological screening[J/OL]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2019, 07(04): 193-198.

子宫颈癌是女性最常见的恶性肿瘤之一,通过人类乳头瘤病毒(human papillomavirus,HPV)检测和宫颈细胞学筛查,进行早期诊断和早期治疗能够控制宫颈癌的发病和死亡。由于缺乏宫颈细胞筛查人员,使其收效甚微。人工智能(artificial intelligency,AI)技术应用宫颈癌筛查,可望提供最佳的解决方案。通过文献复习和归纳,本文阐述了AI辅助宫颈癌筛查的进展,包括不同的AI算法模型的利弊,人工筛查与AI辅助筛查之间不同的人机交互筛查工作模式和应用于场景;分析了目前AI辅助宫颈癌筛查的结果和应用优势;例举了开发AI辅助宫颈癌筛查中遇到的问题和挑战。旨在为开发和利用AI辅助宫颈细胞筛查提供借鉴和思考,促进AI辅助宫颈癌筛查产品早日落地和应用,减少我国宫颈癌的发病率和死亡率。

Cervical cancer is one of the most common malignant tumors in women. Early detection and treatment are critical to reduce its mobility and motality. Cytological screening combined with HPV test is the best way for its early detection. However, the early diagnosis is impeded due to severely lack of cytopathologists. The application of artificial intelligency (AI) technology in cervical cancer screening will provide the best solution to enhance the screening efficiency and quality. We reviewed literatures of the AI-aided cervical cancer screening, described its progress of AI algorithm models, human screening and AI-aided screening interactive models in the cervical cytology; described the Prons and Cons of different machine and deep learning algorithms based on the bright and dark rules; analyzed available results of the AI-aided cervical cancer screening, and diacussed problems and challenges in exploring and applying of the AI-aided cervical cancer screening products. The purpose of this review is to provide insights for the research and development of the AI-aided cervical cancer screening to promote its application and implementation, which will contribute to reduce the mobility and motality of cervical cancer.

图1 基于明规则与暗规则的人工智能算法
表1 基于明规则的机器学习算法
表2 基于暗规则的机器学习算法
图2 传统宫颈细胞筛查与多种人-机辅助筛查交互工作模式
1
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clini, 2018,68(6):394-424.
2
吕永金,谢沁玲,郑宝文,等. 子宫颈癌筛查大样本数据引发的思考[J/CD]. 中华临床实验室管理电子杂志, 2016,4(1):8-12.
3
上海交通大学人工智能研究院,上海市卫生和健康发展研究中心,上海交通大学医学院,等. 中国人工智能医疗白皮书[R]. 2019-1.
4
Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology[J]. Nat Rev Clin Oncol, [2019-08-09]. doi: 10.1038/s41571-019-0252-y. [Epub ahead of print].
5
Koss LG, Lin E, Schreiber K, et al. Evaluation of the PAPNET cytologic screening system for quality control of cervical smears[J]. Am J Clin Pathol, 1994,101(2):220-229.
6
中国医学影像AI产学研用创新联盟. 2019中国医学影像AI白皮书[R]. 2019-1.
7
Mariarputham EJ, Stephen A. Nominated texture based cervical cancer classification[J]. Comput Math Methods Med, 2015:586928.
8
Zhang J, Liu Z, Du B, et al. Binary tree-like network with two-path Fusion Attention Feature for cervical cell nucleus segmentation[J]. Comput Biol Med, 2019,108:223-233.
9
Komagata H, Ichimura T, Matsuta Y, et al. Feature analysis of cell nuclear chromatin distribution in support of cervical cytology[J]. J Med Imaging (Bellingham), 2017,4(4):047501.
10
廖欣,郑欣,邹娟,等. 基于神经网络集成模型的宫颈细胞病理计算机辅助诊断方法[J]. 液晶与显示, 2018,33(4):90-99.
11
Song Y, Zhang L, Chen S, et al. A deep learning based framework for accurate segmentation of cervical cytoplasm and nuclei[J]. Conf Proc IEEE Eng Med Biol Soc, 2014:2903-2906.
12
Zhi Lu, Carneiro G, Bradley AP. An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells[J]. IEEE Trans Image Process, 2015,24(4):1261-1272.
13
Zhao M, Wu A, Song J, et al. Automatic screening of cervical cells using block image processing[J]. Biomed Eng Online, 2016,15:14.
14
胡卉,蔡金清. 基于深度卷积神经网络的宫颈细胞涂片的病变细胞分类[J]. 软件工程, 2018,21(8):23-26.
15
郑欣,田博,李晶晶. 基于YOLO模型的宫颈细胞簇团智能识别方法[J]. 液晶与显示, 2018,33(11):64-70.
16
郑珂,张声,唐坚清. 计算机辅助阅片系统在宫颈细胞学筛查中的应用[J]. 诊断病理学杂志, 2015,22(6):364-366.
17
Keyhani-Rofagha S, Palma T, O’Toole RV. Automated screening for quality control using PAPNET: a study of 638 negative Pap smears[J]. Diagn Cytopathol, 1996 14(4):316-320.
18
Doornewaard H, van de Seijp H, Woudt JM, et al. Negative cervical smears before CIN 3/carcinoma. Reevaluation with the PAPNET Testing System[J]. Acta Cytol, 1997,41(1):74-78.
19
Kaufman RH, Schreiber K, Carter T. Analysis of atypical squamous (glandular) cells of undetermined significance smears by neural network-directed review[J]. Obstet Gynecol, 1998,91(4):556-560.
20
Wilbur DC, Black-Schaffer WS, Luff RD, et al. The Becton Dickinson Focal Point GS Imaging System: clinical trials demonstrate significantly improved sensitivity for the detection of important cervical lesions[J]. Am J Clin Pathol, 2009,132(5):767-775.
21
Zhang L, Le Lu, Nogues I, et al. DeepPap: Deep convolutional networks for cervical cell classification[J]. IEEE J Biomed Health Inform, 2017,21(6):1633-1643.
22
周东华,田杰,王夷黎,等. 计算机辅助阅片与单纯人工阅片在宫颈液基细胞学诊断中对比观察[J]. 临床与实验病理学杂志, 2013, 29(7):782-784.
23
Kok MR, Boon ME, Schreiner-Kok PG, et al. Cytological recognition of invasive squamous cancer of the uterine cervix: comparison of conventional light-microscopical screening and neural network-based screening[J]. Hum Pathol, 2000,31(1):23-28.
24
Duby JM, DiFurio MJ. Implementation of the ThinPrep Imaging System in a tertiary military medical center[J]. Cancer, 2009,117(4):264-270.
25
Lozano R. Comparison of computer-assisted and manual screening of cervical cytology[J]. Gynecol Oncol, 2007,104(1):134-138.
26
Halford JA, Batty T, Boost T, et al. Comparison of the sensitivity of conventional cytology and the ThinPrep Imaging System for 1,083 biopsy confirmed high-grade squamous lesions[J]. Diagn Cytopathol, 2010,38(5):318-326.
27
Kok MR, Habers MA, Schreiner-Kok PG, et al. New paradigm for ASCUS diagnosis using neural networks[J]. Diagn Cytopathol, 1998,19(5):361-366.
28
Chhieng DC, Elgert PA, Xiong Y, et al. Use of computer-assisted rescreening as an ancillary tool to subclassify AGUS cervical smears[J]. Diagn Cytopathol, 2000,23(3):165-170.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 罗刚, 泮思林, 孙玲玉, 李志新, 陈涛涛, 乔思波, 庞善臣. 一种新型语义网络分析模型对室间隔完整型肺动脉闭锁和危重肺动脉瓣狭窄胎儿右心发育不良程度的评价作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(04): 377-383.
[4] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[5] 张嘉炜, 王瑞, 张克诚, 易磊, 周增丁. 烧烫伤创面深度智能检测模型P-YOLO的建立及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 379-385.
[6] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[7] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[8] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[9] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[10] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[11] 苏博兴, 肖博, 李建兴. 2024年美国泌尿外科学会年会结石领域手术治疗相关热点研究及解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 303-308.
[12] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[13] 赵毅, 李昶田, 唐文博, 白雪婷, 刘荣. 腹腔镜术中超声主胰管自动识别模型的临床应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 290-294.
[14] 潘清, 葛慧青. 基于机械通气波形大数据的人机不同步自动监测方法[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 399-403.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?