3 |
Sarah B Ng, Kati J Buckingham, Choli Lee, et al. Exome sequening identifies the cause of a mendelian disorder[J]. Nature genetics,2010,42(1):30-35.
|
4 |
Wang X, Wang H, Cao M, et al. Whole-exome sequencing identifies ALMS1,IQCB1, CNGA3, and MYO7A mutations in patients with Leber congenital amaurosis[J]. Hum Mutat, 2011,32(12):1450-1459.
|
5 |
Wang H, Chen X, Dudinsky L, et al. Exome capture sequencing identifies a novel mutation in BBS4[J]. Mol Vis, 2011,17:3529-3540.
|
6 |
Flannick J, Beer NL, Bick AG, et al. Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes[J]. Nat Genet, 2013,45(11):1380-1385.
|
7 |
Xu Y, Xiao B, Jiang WT, et al. A novel mutation identified in PKHD1 by targeted exome sequencing: guiding prenatal diagnosis for an ARPKD family[J]. Gene, 2014,551(1):33-38.
|
8 |
Smith JD, Hing AV, Clarke CM, et al. Exome sequencing identifies a recurrent de novo ZSWIM6 mutation associated with acromelic frontonasal dysostosis[J]. Am J Hum Genet, 2014,95(2):235-240.
|
9 |
Yang Y, Muzny DM, Reid JG, et al.Clinical whole-exome sequencing for the diagnosis of mendelian disorders[J]. N Engl J Med, 2013,369(16): 1502-1511.
|
10 |
Lee H, Deignan JL, Dorrani N, et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders[J].JAMA, 2014,312(18):1880-1887.
|
11 |
Soden SE, Saunders CJ, Willig LK, et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders[J]. Sci Transl Med, 2014,6(265):265ra168.
|
12 |
Yang Y, Muzny DM, Xia F, et al.Molecular findings among patients referred for clinical whole-exome sequencing[J]. JAMA, 2014,312(18):1870-1879.
|
13 |
Santani A, Murrell J, Funke B, et al. Development and Validation of Targeted Next-Generation Sequencing Panels for Detection of Germline Variants in Inherited Diseases[J]. Arch Pathol Lab Med, 2017,141(6):787-797.
|
14 |
Head SR, Komori HK, LaMere SA, et al. Library construction for next-generation sequencing: overviews and challenges[J]. Biotechniques, 2014,56(2):61-64,66,68.
|
15 |
Quail MA, Swerdlow H, Turner DJ. Improved protocols for the illumina genome analyzer sequencing system[J]. Curr Protoc Hum Genet, 2009,Chapter 18:Unit 18.2.
|
16 |
Jennings LJ, Arcila ME, Corless C, et al. Guidelines for Validation of Next-Generation Sequencing-Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists[J]. J Mol Diagn, 2017,19(3):341-365.
|
17 |
Clark MJ, Chen R, Lam HY, et al. Performance comparison of exome DNA sequencing technologies[J]. Nat Biotechnol, 2011,29(10): 908-914.
|
18 |
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2010,26(5):589-595.
|
19 |
Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools[J]. Bioinformatics, 2009,25(16):2078-2079.
|
20 |
Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing[J]. Genome Res, 2012,22(3):568-576.
|
21 |
McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010,20(9):1297-1303.
|
22 |
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Res, 2010,38(16):e164.
|
23 |
Ruark E, Renwick A, Clarke M, et al. The ICR142 NGS validation series: a resource for orthogonal assessment of NGS analysis[J].F1000Res, 2016,5:386.
|
24 |
Hintzsche JD, Robinson WA, Tan AC. A Survey of Computational Tools to Analyze and Interpret Whole Exome Sequencing Data[J]. Int J Genomics, 2016,6:7983236.
|
25 |
Dong C, Wei P, Jian X, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies[J]. Hum Mol Genet, 2015,24(8):2125-2137.
|
26 |
Clark MJ, Chen R, Lam HY, et al. Performance comparison of exome DNA sequencing technologies[J]. Nat Biotechnol, 2011,29(10):908-914.
|
27 |
Chilamakuri CS, Lorenz S, Madoui MA, et al. Performance comparison of four exome capture systems for deep sequencing[J]. BMC Genomics, 2014,15:449.
|
28 |
Green B, Bouchier C, Fairhead C, et al. Insertion site preference of Mu,Tn5,and Tn7 transposons[J]. Mob DNA, 2012,3(1):3.
|
29 |
Shigemizu D, Momozawa Y, Abe T, et al. Performance comparison of four commercial human whole-exome capture platforms[J]. Sci Rep, 2015,5:12742.
|
30 |
Bonfiglio S, Vanni I, Rossella V, et al. Performance comparison of two commercial human whole-exome capture systems on formalin-fixed paraffin-embedded lung adenocarcinoma samples[J]. BMC Cancer, 2016,16(1):692.
|
1 |
Ng SB, Turner EH, Robertson PD, et al. Targeted capture and massively parallel sequencing of 12 human exomes[J]. Nature 461(7261):272-276.
|
2 |
Choi M, Scholl UI, Ji W, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing[J]. Proc Natl Acad Sci USA, 2009,106(45):19096-19101.
|