切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2020, Vol. 08 ›› Issue (02) : 87 -93. doi: 10.3877/cma.j.issn.2095-5820.2020.02.005

所属专题: 文献

实验研究

人全外显子组测序IDT捕获探针的性能验证
孙明明1, 刘菲菲1, 欧小华2, 胡昌明2, 毛琳琳1, 赵薇薇1,()   
  1. 1. 510005 广州,广州金域医学检验中心有限公司,临床基因组检测中心;510005 广州,广州金域医学检验集团股份有限公司
    2. 510005 广州,广州金域医学检验中心有限公司,临床基因组检测中心
  • 收稿日期:2019-09-22 出版日期:2020-05-28
  • 通信作者: 赵薇薇
  • 基金资助:
    广州市产业领军人才集聚工程(CXLJTD-201603); 广州市科技计划项目(201604046001)

Performance verification of IDT capture probes for human Whole-exome sequencing

Mingming Sun1, Feifei Liu1, Xiaohua Ou2, Changming Hu2, Linlin Mao1, Weiwei Zhao1,()   

  1. 1. Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou 510005, China; Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou 510005, China
    2. Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou 510005, China
  • Received:2019-09-22 Published:2020-05-28
  • Corresponding author: Weiwei Zhao
  • About author:
    Corresponding author: Zhao Weiwei, Email:
引用本文:

孙明明, 刘菲菲, 欧小华, 胡昌明, 毛琳琳, 赵薇薇. 人全外显子组测序IDT捕获探针的性能验证[J]. 中华临床实验室管理电子杂志, 2020, 08(02): 87-93.

Mingming Sun, Feifei Liu, Xiaohua Ou, Changming Hu, Linlin Mao, Weiwei Zhao. Performance verification of IDT capture probes for human Whole-exome sequencing[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2020, 08(02): 87-93.

目的

探讨已建立的二代测序技术进行人全外显子组测序项目对变异的检出性能。

方法

对4例实验室能力比对验证样本和4例已知结果样本进行全外显子组检测,分析点变异和插入缺失变异,从检测准确度、检测灵敏度、检测特异性、精密度和可报告范围等方面进行性能评估。数据质量控制以目标区域覆盖率、捕获特异性和平均深度为基础。

结果

数据输出量大于8G,实现了目标序列区域99.7%以上的覆盖率,捕获特异性86%以上,平均测序深度100×以上,Q30大于90%,对SNV的检出率达100%,50 bp以下Indel检出率达100%。

结论

本标准操作在验证范围内对变异的检出能力达到应用的要求。

Objective

To investigate the detection performance of Whole-exome sequencing (WES) for calling variants by the established second-generation sequencing technology.

Methods

Four CAP proficiency testing samples and 4 known results samples were detected by WES. Point mutations and insertion deletion mutations were analyzed. Detection performance was evaluated in terms of accuracy, sensitivity, specificity, precision and reportable range of calling variants. Data quality control was performed based on coverage of target region, capture specificity and mean depth.

Results

Output data should not be less than 8G. In this case, coverage of target region is over 99.7%. Capture specificity is over 86%. Mean depth is over 100×. Q30 is over 90%, The detection of single nucleotide variations and small insertion and deletion under 50bp is up to 100%.

Conclusion

The standard operating procedure within the scope of validation can meet the application requirement of mutation detection.

图1 生物信息学分析
表1 原始数据分析质控参数及参考值
表2 5例样本8个SNV的NGS检测结果
表3 6例样本9个Indel的NGS检测结果
表4 4例CAP PT标本阴性位点的NGS检测结果
表5 2例CAP PT标本NGS检测结果说明
表6 4例样本7个SNV两次检测的结果比较
表7 3例样本5个Indel两次检测的结果比较
表8 4例样本7个SNV的两次检测结果比较
表9 3例样本5个Indel的两次检测结果比较
1
Stark Z, Tan TY, Chong B, et al. A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders[J]. Genet Med, 2016, 18(11): 1090-1096.
2
Trujillano D, Bertoli-Avella AM, Kandaswamy K, et al. Clinical exome sequencing: results from 2819 samples reflecting 1000 families[J]. Eur J Hum Genet, 2017, 25(2):176-182.
3
Tacik P, Guthrie KJ, Strongosky AJ, et al. Whole-exome sequencing as a diagnostic tool in a family with episodic ataxia type 1[J]. Mayo Clin Proc, 2015,90(3):366-371.
4
Set KK, Ghosh D, Huq AHM, et al. Episodic ataxia type 1 (K-channelopathy) manifesting as paroxysmal nonkinesogenic dyskinesia: expanding the phenotype[J]. Mov Disord Clin Pract, 2017,4(5):784-786.
5
Head SR, Komori HK, LaMere SA, et al. Library construction for next-generation sequencing: overviews and challenges[J]. Biotechniques, 2014,56(2):61-64+66+68.
6
Quail MA, Swerdlow H, Turner DJ. Improved protocols for the illumina genome analyzer sequencing system[M]. Curr Protoc Hum Genet, 2009, Chapter 18:Unit 18.2.
7
Jennings LJ, Arcila ME, Corless C, et al. Guidelines for validation of next-generation sequencing-based oncology panels: a joint consensus recommendation of the association for molecular pathology and college of american pathologists[J]. J Mol Diagn, 2017,19(3): 341-365.
8
Clark MJ, Chen R, Lam HY, et al. Performance comparison of exome DNA sequencing technologies[J]. Nat Biotechnol, 2011,29(10): 908-914.
9
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2010,26(5):589-595.
10
Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools[J]. Bioinformatics, 2009, 25(16):2078-2079.
11
Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing[J]. Genome Res, 2012,22(3):568-576.
12
McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010,20(9):1297-1303.
13
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Res, 2010,38(16):e164.
14
Ruark E, Renwick A, Clarke M, et al. The ICR142 NGS validation series: a resource for orthogonal assessment of NGS analysis[J]. F1000Res, 2016,5:386.
15
Hintzsche JD, Robinson WA, Tan AC. A survey of computational tools to analyze and interpret whole exome sequencing data[J]. Int J Genomics, 2016, 2016:1-16.
16
Dong C, Wei P, Jian X, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies[J]. Hum Mol Genet, 2015,24(8): 2125-2137.
17
Goldfeder RL, Priest JR, Zook JM, et al. Medical implications of technical accuracy in genome sequencing[J]. Genome Med, 2016, 8(1):24.
[1] 付颖, 崔立刚, 杜婷婷, 谭石, 王淑敏, 孙彦, 马久祎. 常规超声及超声造影鉴别诊断局灶性机化性肺炎与非特异性肺炎的初步研究[J]. 中华医学超声杂志(电子版), 2022, 19(08): 754-760.
[2] 周美岑, 王华, 母得志. 早产儿疫苗预防接种及时性[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 261-266.
[3] 骞佩, 包瑛, 黄惠梅, 韩艳, 索磊, 杨楠, 安小敏, 党佳文. 常染色体隐性遗传多囊肾病患儿PKHD1基因变异的临床表型及基因型[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 540-547.
[4] 王汉生, 陈晓, 尤辉, 刘岩, 任涛, 王梅芳. 肺吸虫感染致胸腔积液6例临床分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 348-353.
[5] 柳成林, 荀文兴, 杨海珍, 范素萌, 刘宇博, 张红梅. 程序性坏死特异性抑制剂-1对高糖环境下牙周膜干细胞增殖和成骨分化的影响[J]. 中华口腔医学研究杂志(电子版), 2022, 16(03): 160-167.
[6] 黄展森, 狄金明. 2022版欧洲泌尿外科学会前列腺癌诊疗指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(06): 483-488.
[7] 史日东, 赵翠娟, 陈宁. 多排螺旋CT多平面重建在腹股沟斜疝、直疝及股疝中的鉴别诊断及临床价值[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(04): 432-434.
[8] 赵文思, 曾艳峰. 血清神经元特异性烯醇化酶联合CT检查对肺尘病诊断意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 67-69.
[9] 孙龙, 政红卫, 俞玲玲, 甄杰. 非小细胞肺癌FGFR3及CyclinD1表达与临床病理特征及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 64-66.
[10] 左剑辉, 陈宇, 尹纯同. Cho/Cr比值联合NSE对肺癌脑转移/骨转移的预后意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 39-42.
[11] 张俊谊, 徐晓婷, 刘玲. 肌肉组织特异性miRNA与机械通气患者膈肌功能及撤机结局的关系[J]. 中华重症医学电子杂志, 2023, 09(01): 46-53.
[12] 姚雄宇, 董秀哲, 李晓刚, 张恩浩, 侯国军. 布鲁菌病致前列腺炎合并脊柱炎一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(05): 624-626.
[13] 李秋琼, 薛静, 王敏, 陈芬, 肖美芳. NSE、SIL-2R、TNF-α检测对小儿病毒性脑膜炎与细菌性脑膜炎的诊断价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 303-307.
[14] 孙兵, 丁鸭锁, 尹春, 刘泽昊, 常浩. 血清Netrin-1和NSE对急性缺血性脑卒中早期神经功能恶化及预后的预测价值[J]. 中华临床医师杂志(电子版), 2022, 16(03): 258-263.
[15] 宋卫忠, 林路洋. 过敏性皮肤病患者血清过敏原特异性免疫球蛋白E抗体分析[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 90-94.
阅读次数
全文


摘要