切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2021, Vol. 09 ›› Issue (02) : 121 -124. doi: 10.3877/cma.j.issn.2095-5820.2021.02.012

所属专题: 文献

人才培养

医学生心肺复苏考试成绩预测模型的建立
茅海峰1, 李敏1, 朱永城1, 莫均荣1, 叶显智1, 林珮仪1, 陈晓辉1, 江慧琳1, 李艳玲1,()   
  1. 1. 510260 广东广州,广州医科大学附属第二医院急诊科
  • 收稿日期:2020-11-18 出版日期:2021-05-28
  • 通信作者: 李艳玲
  • 基金资助:
    2018年度广东省临床教学基地教学改革研究项目(2018JD031); 2017年广州医科大学教育科学规划课题项目(201728)

Development of a prediction model of cardiopulmonary resuscitation skill performance for medical students

Haifeng Mao1, Min Li1, Yongcheng Zhu1, Junrong Mo1, Xianzhi Ye1, Peiyi Lin1, Xiaohui Chen1, Huilin Jiang1, Yanling Li1,()   

  1. 1. Emergency Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Guangdong 510260, China
  • Received:2020-11-18 Published:2021-05-28
  • Corresponding author: Yanling Li
引用本文:

茅海峰, 李敏, 朱永城, 莫均荣, 叶显智, 林珮仪, 陈晓辉, 江慧琳, 李艳玲. 医学生心肺复苏考试成绩预测模型的建立[J]. 中华临床实验室管理电子杂志, 2021, 09(02): 121-124.

Haifeng Mao, Min Li, Yongcheng Zhu, Junrong Mo, Xianzhi Ye, Peiyi Lin, Xiaohui Chen, Huilin Jiang, Yanling Li. Development of a prediction model of cardiopulmonary resuscitation skill performance for medical students[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2021, 09(02): 121-124.

目的

利用临床医学系学生的实习数据建立心肺复苏考试成绩预测模型。

方法

回顾性收集2016年1月至2018年12月在广州医科大学第二临床学院实习的临床医学系实习生数据。学生数据包括学生实习期间各科考试成绩、性别及客观结构化临床考试的心肺复苏考站成绩,通过逻辑回归分析,建立心肺复苏考试成绩预测模型。

结果

对382例医学生实习数据进行逻辑回归分析,最终纳入模型的变量包括5项:外科病例、外科理论、妇产理论、儿科理论、性别。变量“性别为女”的OR为0.58 (95% CI: 0.36~0.92),其余变量的OR介于0.90至1。成绩预测模型的AUC值为64.8%(95% CI: 0.59~0.71)。

结论

性别可能是心肺复苏考试成绩的影响因素;心肺复苏考试成绩预测模型的预测价值仍有待提高。

Objective

To establish a prediction model of cardiopulmonary resuscitation skill performance for medical students based on internship data.

Methods

A retrospective study among interns in the Second Affiliated Hospital of Guangzhou Medical University was conducted from Jan 2016 to Dec 2018. Data including students' test scores during internship, gender, and CPR skill performance of objective structured clinical examination of graduation was collected. Logistic regression analysis was used to develop the prediction model of cardiopulmonary resuscitation skill performance.

Results

382 cases of medical students' data were analyzed. A prediction model was developed and consisted of five parameters: surgery case score, surgical theory test score, obstetrics theory test score, pediatric theory test score, gender. Odds ratio of "gender is female" was 0.58 (95% CI: 0.36-0.92), and Odds ratios of the other variables were between 0.90 and 1. The AUC of the prediction model was 64.8% (95% CI: 0.59-0.71)

Conclusion

Gender might be an influencing factor of CPR skill performance. The predictive performance of the CPR skill performance prediction model still needs to be improved.

表1 CPR成绩合格组与不合格组基线资料比较
表2 各科成绩在不同性别医学生之间的比较
表3 各变量单因素逻辑回归分析结果
表4 多因素逻辑回归分析结果
图1 医学生心肺复苏考试成绩预测模型的ROC曲线
1
Luc G, Baert V, Escutnaire J, et al. Epidemiology of out-of-hospital cardiac arrest: A French national incidence and mid-term survival rate study[J]. Anaesth Crit Care Pain Med, 2019, 38(2):131-135.
2
Hawkes C, Booth S, Ji C, et al. Epidemiology and outcomes from out-of-hospital cardiac arrests in England[J]. Resuscitation, 2017, 110:133-140.
3
Shao F, Li CS, Liang LR, et al. Incidence and outcome of adult in-hospital cardiac arrest in Beijing, China[J]. Resuscitation, 2016, 102:51-56.
4
Kragholm K, Wissenberg M, Mortensen RN, et al. Bystander Efforts and 1-Year Outcomes in Out-of-Hospital Cardiac Arrest[J]. N Engl J Med, 2017, 376(18):1737-1747.
5
Blewer AL, Ibrahim SA, Leary M, et al. Cardiopulmonary resuscitation training disparities in the United States[J]. J Am Heart Assoc, 2017, 6(5): e006124.
6
Wagner M, Bibl K, Hrdliczka E, et al. Effects of feedback on chest compression quality: A randomized simulation study[J]. Pediatrics, 2019, 143(2):e20182441.
7
Shah S, Peng I, Seifert CF. A model to predict NAPLEX outcomes and identify students needing additional preparation[J]. Curr Pharm Teach Learn, 2019, 11(8):810-817.
8
Gillette C, Stanton RB, Anderson HG. Student performance on a knowledge-based exam may predict student ability to communicate effectively with a standardized patient during an objective structured clinical examination[J]. Curr Pharm Teach Learn, 2017, 9(2):201-207.
9
Liang W, Liang H, Ou L, et al. Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients with COVID-19[J]. JAMA Intern Med, 2020,180(8):1081-1089.
10
Li J, Thompson R, Shulruf B. Struggling with strugglers: Using data from selection tools for early identification of medical students at risk of failure[J]. BMC Med Educ, 2019, 19(1):415.
11
Saqr M, Fors U, Tedre M. How learning analytics can early predict under-achieving students in a blended medical education course[J]. Med Teach, 2017, 39(7):757-767.
12
Medina MS, Neely S, Draugalis JLR. Predicting Pharmacy Curriculum Outcomes Assessment Performance Using Admissions, Curricular, Demographics, and Preparation Data[J]. Am J Pharm Educ, 2019, 83(10):7526.
13
MacCann C, Jiang Y, Brown LER, et al. Emotional Intelligence Predicts Academic Performance: A Meta-Analysis[J]. Psychol Bull, 2020, 146(2):150-186.
14
Cha JS, Anton NE, Mizota T, et al. Use of non-technical skills can predict medical student performance in acute care simulated scenarios[J]. Am J Surg, 2019, 217(2):323-328.
15
Sopka S, Biermann H, Rossaint R, et al. Resuscitation training in small-group setting-gender matters[J]. Scand J Trauma Resusc Emerg Med, 2013, 21: 30.
[1] 汪彦阳, 周远洋, 魏雪菲, 陶志嵩, 龚海燕. 基于癌症基因组图谱构建乳腺癌中WAC反义RNA1的加权基因共表达网络和临床预测模型[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 218-228.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 陈永庄, 莫小乔, 谢天. 心血管事件患者术后30 d死亡风险决策树模型的构建与评估——基于少数类样本合成过采样技术算法[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 390-398.
[4] 王迎迎, 谢平. 乙型肝炎病毒感染合并肺结核患者发生肝损伤的危险因素及预测模型构建[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 267-273.
[5] 徐双云, 汪佩林, 卫志文. 轮状病毒阳性肠炎并发惊厥危险因素及相关预测模型构建[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 260-266.
[6] 张俊, 罗再, 段茗玉, 裘正军, 黄陈. 胃癌预后预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 456-461.
[7] 李坤河, 寇萌佳, 邝立挺. 肝移植术后二次气管插管的危险因素及预测模型的建立[J]. 中华普通外科学文献(电子版), 2023, 17(05): 366-371.
[8] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[9] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[10] 王万川, 麦广智, 张晓槟, 冯家豪. 腹腔镜下LAR术治疗低位直肠癌保肛术中钉仓数量与术后LARS的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 491-496.
[11] 徐伯麒, 陶亮, 章帆, 毛忠琦. 结肠癌患者淋巴结转移预测模型的建立[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 393-397.
[12] 杨静, 顾红叶, 赵莹莹, 孙梦霞, 查园园, 王琪. 老年血液透析患者短期死亡的影响因素及列线图预测模型的预测作用[J]. 中华肾病研究电子杂志, 2023, 12(05): 254-259.
[13] 李飞翔, 段虎斌, 李晋虎, 吴昊, 王永红, 范益民. 急性颅脑损伤继发下肢静脉血栓的相关危险因素分析及预测模型构建[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 277-282.
[14] 王亚丹, 吴静, 黄博洋, 王苗苗, 郭春梅, 宿慧, 王沧海, 王静, 丁鹏鹏, 刘红. 白光内镜下结直肠肿瘤性质预测模型的构建与验证[J]. 中华临床医师杂志(电子版), 2023, 17(06): 655-661.
[15] 于洋, 刘孝洁, 王丽娟, 高宇晨, 丁瑶, 敖虎山. 新冠肺炎常态化条件下心肺复苏培训模式初探[J]. 中华临床医师杂志(电子版), 2023, 17(04): 483-486.
阅读次数
全文


摘要