切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2021, Vol. 09 ›› Issue (02) : 121 -124. doi: 10.3877/cma.j.issn.2095-5820.2021.02.012

所属专题: 文献

人才培养

医学生心肺复苏考试成绩预测模型的建立
茅海峰1, 李敏1, 朱永城1, 莫均荣1, 叶显智1, 林珮仪1, 陈晓辉1, 江慧琳1, 李艳玲1,()   
  1. 1. 510260 广东广州,广州医科大学附属第二医院急诊科
  • 收稿日期:2020-11-18 出版日期:2021-05-28
  • 通信作者: 李艳玲
  • 基金资助:
    2018年度广东省临床教学基地教学改革研究项目(2018JD031); 2017年广州医科大学教育科学规划课题项目(201728)

Development of a prediction model of cardiopulmonary resuscitation skill performance for medical students

Haifeng Mao1, Min Li1, Yongcheng Zhu1, Junrong Mo1, Xianzhi Ye1, Peiyi Lin1, Xiaohui Chen1, Huilin Jiang1, Yanling Li1,()   

  1. 1. Emergency Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Guangdong 510260, China
  • Received:2020-11-18 Published:2021-05-28
  • Corresponding author: Yanling Li
引用本文:

茅海峰, 李敏, 朱永城, 莫均荣, 叶显智, 林珮仪, 陈晓辉, 江慧琳, 李艳玲. 医学生心肺复苏考试成绩预测模型的建立[J/OL]. 中华临床实验室管理电子杂志, 2021, 09(02): 121-124.

Haifeng Mao, Min Li, Yongcheng Zhu, Junrong Mo, Xianzhi Ye, Peiyi Lin, Xiaohui Chen, Huilin Jiang, Yanling Li. Development of a prediction model of cardiopulmonary resuscitation skill performance for medical students[J/OL]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2021, 09(02): 121-124.

目的

利用临床医学系学生的实习数据建立心肺复苏考试成绩预测模型。

方法

回顾性收集2016年1月至2018年12月在广州医科大学第二临床学院实习的临床医学系实习生数据。学生数据包括学生实习期间各科考试成绩、性别及客观结构化临床考试的心肺复苏考站成绩,通过逻辑回归分析,建立心肺复苏考试成绩预测模型。

结果

对382例医学生实习数据进行逻辑回归分析,最终纳入模型的变量包括5项:外科病例、外科理论、妇产理论、儿科理论、性别。变量“性别为女”的OR为0.58 (95% CI: 0.36~0.92),其余变量的OR介于0.90至1。成绩预测模型的AUC值为64.8%(95% CI: 0.59~0.71)。

结论

性别可能是心肺复苏考试成绩的影响因素;心肺复苏考试成绩预测模型的预测价值仍有待提高。

Objective

To establish a prediction model of cardiopulmonary resuscitation skill performance for medical students based on internship data.

Methods

A retrospective study among interns in the Second Affiliated Hospital of Guangzhou Medical University was conducted from Jan 2016 to Dec 2018. Data including students' test scores during internship, gender, and CPR skill performance of objective structured clinical examination of graduation was collected. Logistic regression analysis was used to develop the prediction model of cardiopulmonary resuscitation skill performance.

Results

382 cases of medical students' data were analyzed. A prediction model was developed and consisted of five parameters: surgery case score, surgical theory test score, obstetrics theory test score, pediatric theory test score, gender. Odds ratio of "gender is female" was 0.58 (95% CI: 0.36-0.92), and Odds ratios of the other variables were between 0.90 and 1. The AUC of the prediction model was 64.8% (95% CI: 0.59-0.71)

Conclusion

Gender might be an influencing factor of CPR skill performance. The predictive performance of the CPR skill performance prediction model still needs to be improved.

表1 CPR成绩合格组与不合格组基线资料比较
表2 各科成绩在不同性别医学生之间的比较
表3 各变量单因素逻辑回归分析结果
表4 多因素逻辑回归分析结果
图1 医学生心肺复苏考试成绩预测模型的ROC曲线
1
Luc G, Baert V, Escutnaire J, et al. Epidemiology of out-of-hospital cardiac arrest: A French national incidence and mid-term survival rate study[J]. Anaesth Crit Care Pain Med, 2019, 38(2):131-135.
2
Hawkes C, Booth S, Ji C, et al. Epidemiology and outcomes from out-of-hospital cardiac arrests in England[J]. Resuscitation, 2017, 110:133-140.
3
Shao F, Li CS, Liang LR, et al. Incidence and outcome of adult in-hospital cardiac arrest in Beijing, China[J]. Resuscitation, 2016, 102:51-56.
4
Kragholm K, Wissenberg M, Mortensen RN, et al. Bystander Efforts and 1-Year Outcomes in Out-of-Hospital Cardiac Arrest[J]. N Engl J Med, 2017, 376(18):1737-1747.
5
Blewer AL, Ibrahim SA, Leary M, et al. Cardiopulmonary resuscitation training disparities in the United States[J]. J Am Heart Assoc, 2017, 6(5): e006124.
6
Wagner M, Bibl K, Hrdliczka E, et al. Effects of feedback on chest compression quality: A randomized simulation study[J]. Pediatrics, 2019, 143(2):e20182441.
7
Shah S, Peng I, Seifert CF. A model to predict NAPLEX outcomes and identify students needing additional preparation[J]. Curr Pharm Teach Learn, 2019, 11(8):810-817.
8
Gillette C, Stanton RB, Anderson HG. Student performance on a knowledge-based exam may predict student ability to communicate effectively with a standardized patient during an objective structured clinical examination[J]. Curr Pharm Teach Learn, 2017, 9(2):201-207.
9
Liang W, Liang H, Ou L, et al. Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients with COVID-19[J]. JAMA Intern Med, 2020,180(8):1081-1089.
10
Li J, Thompson R, Shulruf B. Struggling with strugglers: Using data from selection tools for early identification of medical students at risk of failure[J]. BMC Med Educ, 2019, 19(1):415.
11
Saqr M, Fors U, Tedre M. How learning analytics can early predict under-achieving students in a blended medical education course[J]. Med Teach, 2017, 39(7):757-767.
12
Medina MS, Neely S, Draugalis JLR. Predicting Pharmacy Curriculum Outcomes Assessment Performance Using Admissions, Curricular, Demographics, and Preparation Data[J]. Am J Pharm Educ, 2019, 83(10):7526.
13
MacCann C, Jiang Y, Brown LER, et al. Emotional Intelligence Predicts Academic Performance: A Meta-Analysis[J]. Psychol Bull, 2020, 146(2):150-186.
14
Cha JS, Anton NE, Mizota T, et al. Use of non-technical skills can predict medical student performance in acute care simulated scenarios[J]. Am J Surg, 2019, 217(2):323-328.
15
Sopka S, Biermann H, Rossaint R, et al. Resuscitation training in small-group setting-gender matters[J]. Scand J Trauma Resusc Emerg Med, 2013, 21: 30.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[3] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[4] 李霞林, 贺芳. 产后出血风险评估和早期预警系统[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 498-503.
[5] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[6] 李国煜, 丛赟, 祖丽胡马尔·麦麦提艾力, 何铁英. 急性胰腺炎并发门静脉系统血栓形成的危险因素及预测模型构建[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 266-270.
[7] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[8] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[9] 犹成亿, 尤恒, 叶东樊, 张雯, 刘禹, 王仁宇, 苏琳茜, 甘慧, 徐智. 基于3D Res U-Net-Faster RCNN 技术和CT 影像学特征的肺结节性质预测模型的建立[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 673-679.
[10] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[11] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[12] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[13] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[14] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[15] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
阅读次数
全文


摘要