切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2021, Vol. 09 ›› Issue (04) : 211 -216. doi: 10.3877/cma.j.issn.2095-5820.2021.04.004

实验研究

儿童急性淋巴细胞白血病糖皮质激素反应性的危险预测因子研究
巫娟1, 陈培松2,()   
  1. 1. 522000 广东揭阳,揭阳市人民医院
    2. 510080 广东广州,中山大学附属第一医院
  • 收稿日期:2021-03-15 出版日期:2021-11-28
  • 通信作者: 陈培松
  • 基金资助:
    广东省自然科学基金(2018A0303130246)

Risk predictors of glucocorticoid reactivity in childhood acute lymphoblastic leukemia

Juan Wu1, Peisong Chen2,()   

  1. 1. Jieyang People's Hospital, Jieyang Guangdong 522000, China
    2. The First Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong 510080, China
  • Received:2021-03-15 Published:2021-11-28
  • Corresponding author: Peisong Chen
引用本文:

巫娟, 陈培松. 儿童急性淋巴细胞白血病糖皮质激素反应性的危险预测因子研究[J]. 中华临床实验室管理电子杂志, 2021, 09(04): 211-216.

Juan Wu, Peisong Chen. Risk predictors of glucocorticoid reactivity in childhood acute lymphoblastic leukemia[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2021, 09(04): 211-216.

目的

分析不同糖皮质激素(GC)反应性的急性淋巴细胞白血病(ALL)患儿初诊时的实验室检测结果差异,寻找可以预测GC反应性的指标并构建相应的预测模型,为早期评估患儿的GC反应性,优化化疗方案提供参考依据。

方法

对首诊于中山大学附属第一医院的ALL患儿的病例资料进行回顾性分析,收集并统计其初诊时诱导化疗前的相关临床资料和实验室检测结果,筛选GC抵抗的相关高危因子,并利用二元logistic回归方程及列线图构建预测模型,使用ROC曲线评价其诊断效能。

结果

初诊时白细胞计数(WBC)、活化部分凝血活酶时间(APTT)、凝血因子Ⅷ、K+、Cl-、CO2、LDH、BCR/ABL1、ETV6/RUNX1在GC敏感组和抵抗组之间差异有统计学意义。其中APTT、K+和WBC是GC反应性的独立危险预测因子,综合这三项血液学指标构建的预测模型其诊断敏感度为0.80,特异度为0.84。

结论

本研究提示综合诱导化疗前APTT、K+和WBC三项实验室检测指标的预测模型能够更好地为临床判断ALL患儿的GC反应性提供参考,但仍然需要更多的病例数据进一步验证。

Objective

To provide reference for early assessment of GC reactivity in children and optimization of chemotherapy, the differences in laboratory test results of children with acute lymphoblastic leukemia (ALL) with different glucocorticoid (GC) reactivity at initial diagnosis were analyzed to find indicators that could predict GC reactivity and construct corresponding prediction models.

Methods

We retrospectively analyzed the cases of children with ALL who were first diagnosed by the First Affiliated Hospital of Sun Yat-sen University. The clinical data and laboratory test results before induction chemotherapy were collected and counted, and the relevant risk factors of GC-resistant were screened. The binary logistic regression equation and nomogram were used to construct the prediction model, and the ROC curve was used to evaluate the diagnostic efficiency.

Results

The laboratory test results at the initial diagnosis such as WBC count, APTT, coagulation factor 8, K+, Cl-, CO2, LDH, BCR-ABL1, ETV6-RUNX1 showed significant statistical differences between the ALL GC-resistant group and GC-sensitive group. APTT, K+ and WBC count were independent risk predictors of GC reactivity. The sensitivity and specificity of the predictive model were 0.80 and 0.84, respectively.

Conclusions

This study suggested that the prediction model combining APTT, K+ and white blood cell count before induction chemotherapy could provide a better reference for clinical judgment of GC reactivity in children with ALL, but more cases are still needed for further verification.

表1 PGR组和PPR组患儿一般情况比较
表2 二元logistic回归分析评估GC反应性的危险预测因子
图1 不同指标评估GC反应性的ROC曲线及列线图预测模型的ROC曲线 注:A、B:不同指标评估GC反应性的ROC曲线;C、D:不同指标评估GC反应性的列线图预测模型的ROC曲线(C试验组、D验证组)
图2 GC反应性预测模型列线图
1
Onciu M. Acute lymphoblastic leukemia[J]. Hematol Oncol Clin North Am, 2009, 23(4):655-674.
2
Jing W, Li J. Identification of biomarkers for the prediction of relapse-free survival in pediatric B-precursor acute lymphoblastic leukemia[J]. Oncol Rep, 2019, 41(1):659-667.
3
Pui CH, Mullighan CG, Evans WE, et al. Pediatric acute lymphoblastic leukemia:where are we going and how do we get there?[J]. Blood, 2012, 120(6):1165-1174.
4
Imai K. Acute lymphoblastic leukemia:pathophysiology and current therapy[J]. Rinsho Ketsueki, 2017, 58(5):460-470.
5
Bhojwani D, Yang JJ, Pui CH. Biology of childhood acute lymphoblastic leukemia[J]. Pediatr Clin North Am, 2015, 62(1):47-60.
6
Zheng R, Peng X, Zeng H, et al. Incidence, mortality and survival of childhood cancer in China during 2000-2010 period:A population-based study[J]. Cancer Lett, 2015, 363(2):176-180.
7
Hefazi M, Litzow MR. Recent advances in the biology and treatment of B-cell acute lymphoblastic leukemia[J]. Blood Lymphat Cancer, 2018, 8:47-61.
8
Moshavash Z, Danyali H, Helfroush MS. An automatic and robust decision support system for accurate acute leukemia diagnosis from blood microscopic images[J]. J Digit Imaging, 2018, 31(5):702-717.
9
Roberts KG. Genetics and prognosis of ALL in children vs adults[J]. Hematology Am Soc Hematol Educ Program, 2018, 2018(1):137-145.
10
Ren YY, Zou Y, Chang LX, et al. Prognostic value of prednisone response in CCLG-ALL 2008[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2015, 23(3):642-646.
11
Gao J, Liu WJ. Prognostic value of the response to prednisone for children with acute lymphoblastic leukemia:a meta-analysis[J]. Eur Rev Med Pharmacol Sci, 2018, 22(22):7858-7866.
12
Jackson RK, Irving JA, Veal GJ. Personalization of dexamethasone therapy in childhood acute lymphoblastic leukaemia[J]. Br J Haematol, 2016, 173(1):13-24.
13
Schrappe M, Reiter A, Zimmermann M, et al. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin-Frankfurt-Münster[J]. Leukemia, 2000, 14(12):2205-2222.
14
Widjajanto PH, Sutaryo S, Purwanto I, et al. Early response to dexamethasone as prognostic factor: result from indonesian childhood WK-ALL protocol in Yogyakarta[J]. J Oncol, 2012, 2012:417941.
15
Möricke A, Lauten M, Beier R, et al. Prediction of outcome by early response in childhood acute lymphoblastic leukemia[J]. Klin Padiatr, 2013, 225 Suppl 1:S50-56.
16
Zhang D, Cheng Y, Fan J, et al. A nomogram for the prediction of progression and overall survival in childhood acute lymphoblastic leukemia[J]. Front Oncol, 2020, 10:1550.
17
Mao R, Hu S, Zhang Y, et al. Prognostic nomogram for childhood acute lymphoblastic leukemia:A comprehensive analysis of 673 patients[J]. Front Oncol, 2020, 10:1673.
18
Kato M, Manabe A. Treatment and biology of pediatric acute lymphoblastic leukemia[J]. Pediatr Int, 2018, 60(1):4-12.
19
Vrooman LM, Silverman LB. Treatment of childhood acute lymphoblastic leukemia: prognostic factors and clinical advances[J]. Curr Hematol Malig Rep, 2016, 11(5):385-394.
20
Ceppi F, Cazzaniga G, Colombini A, et al. Risk factors for relapse in childhood acute lymphoblastic leukemia: prediction and prevention[J]. Expert Rev Hematol, 2015, 8(1):57-70.
21
Pui CH, Yang JJ, Hunger SP, et al. Childhood acute lymphoblastic leukemia: progress through collaboration[J]. J Clin Oncol, 2015, 33(27):2938-2948.
22
Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement[J]. BMJ, 2015, 350:g7594.
23
Smith M, Arthur D, Camitta B, et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia[J]. J Clin Oncol, 1996, 14(1):18-24.
24
Elhasid R, Lanir N, Sharon R, et al. Prophylactic therapy with enoxaparin during L-asparaginase treatment in children with acute lymphoblastic leukemia[J]. Blood Coagul Fibrinolysis, 2001, 12(5):367-370.
25
Li Y, Chen X, Shen Z, et al. Electrolyte and acid-base disorders in cancer patients and its impact on clinical outcomes:evidence from a real-world study in China[J]. Ren Fail, 2020, 42(1):234-243.
26
Milionis HJ, Bourantas CL, Siamopoulos KC, et al. Acid-base and electrolyte abnormalities in patients with acute leukemia[J]. Am J Hematol, 1999, 62(4):201-207.
27
Schultz KR, Carroll A, Heerema NA, et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: children's oncology group study AALL0031[J]. Leukemia, 2014, 28(7):1467-1471.
28
Teachey DT, Hunger SP. Predicting relapse risk in childhood acute lymphoblastic leukaemia[J]. Br J Haematol, 2013, 162(5):606-620.
29
Klingemann HG, Kosukavak M, Höfeler H, et al. Fibronectin and factor Ⅷ-related antigen in acute leukaemia[J]. Hoppe Seylers Z Physiol Chem, 1983, 364(3):269-277.
30
Shaikh AJ, Bawany SA, Masood N, et al. Incidence and impact of baseline electrolyte abnormalities in patients admitted with chemotherapy induced febrile neutropenia[J]. J Cancer, 2011, 2:62-66.
31
Rosner MH, Capasso G, Perazella MA. Acute kidney injury and electrolyte disorders in the critically ill patient with cancer[J]. Curr Opin Crit Care, 2017, 23(6):475-483.
[1] 孙帼, 谢迎东, 徐超丽, 杨斌. 超声联合临床特征的列线图模型预测甲状腺乳头状癌淋巴结转移的价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 734-742.
[2] 王思思, 金晶, 汪婕. 初产妇哺乳期乳腺炎发生的影响因素及风险模型构建[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 272-276.
[3] 刘丹丹, 宋鸣, 李霞, 徐夏君. 老年髋部骨折术后便秘的影响因素及其列线图预测模型[J]. 中华关节外科杂志(电子版), 2023, 17(05): 607-612.
[4] 张秋彬, 张楠, 林清婷, 徐军, 朱华栋, 姜辉. 急性胰腺炎合并急性肾损伤患者的预后评估[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 382-389.
[5] 杨皓媛, 龚杰, 邹青伟, 阮航. 哮喘孕妇的母婴不良妊娠结局研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 522-529.
[6] 郑鹏, 吴赛萍, 谢秀璋, 史庆丰. 术前预测感染性肾结石列线图模型的构建及验证[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 299-306.
[7] 杨梅, 周春, 赵艾红, 王琴. 儿童难治性肺炎支原体肺炎所致塑型性支气管炎风险列线图模型的构建[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 274-281.
[8] 王迎迎, 谢平. 乙型肝炎病毒感染合并肺结核患者发生肝损伤的危险因素及预测模型构建[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 267-273.
[9] 甄子铂, 刘金虎. 基于列线图模型探究静脉全身麻醉腹腔镜胆囊切除术患者术后肠道功能紊乱的影响因素[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 61-65.
[10] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[11] 王万川, 麦广智, 张晓槟, 冯家豪. 腹腔镜下LAR术治疗低位直肠癌保肛术中钉仓数量与术后LARS的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 491-496.
[12] 徐伯麒, 陶亮, 章帆, 毛忠琦. 结肠癌患者淋巴结转移预测模型的建立[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 393-397.
[13] 徐慧新, 刘波, 唐立钧. 体外冲击波治疗>1 cm输尿管上段结石失败的预测模型建立[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 506-511.
[14] 王立涛, 刘恩瑞, 李振鲁, 吴昌亮, 高鹏. 基于SEER数据库手术后原发性阑尾肿瘤患者预后列线图构建与验证[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 404-414.
[15] 杨静, 顾红叶, 赵莹莹, 孙梦霞, 查园园, 王琪. 老年血液透析患者短期死亡的影响因素及列线图预测模型的预测作用[J]. 中华肾病研究电子杂志, 2023, 12(05): 254-259.
阅读次数
全文


摘要