切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2022, Vol. 10 ›› Issue (02) : 65 -75. doi: 10.3877/cma.j.issn.2095-5820.2022.02.001

论著

基于生物信息学对直肠癌中m6A调节因子介导相关修饰模式的分析
周威1, 胡山2, 柳金强1, 段理理1, 钮瞭然1, 洪流1,(), 樊代明1   
  1. 1. 710032 陕西西安,空军军医大学第一附属医院消化病医院
    2. 100017 北京,解放军61889部队卫生所
  • 收稿日期:2021-12-31 出版日期:2022-05-28
  • 通信作者: 洪流
  • 基金资助:
    国家自然科学基金(82073210)

Analysis of m6A regulatory factor mediated modification patterns in rectal cancer based on Bioinformatics

Wei Zhou1, Shan Hu2, Jinqiang Liu1, Lili Duan1, Liaoran Niu1, Liu Hong1,(), Daiming Fan1   

  1. 1. Digestive Hospital, the First Affiliated Hospital, Air Force Medical University, Xi'an Shanxi 710032, China
    2. The Health Center of PLA Unit 61889, Beijing 100017, China
  • Received:2021-12-31 Published:2022-05-28
  • Corresponding author: Liu Hong
引用本文:

周威, 胡山, 柳金强, 段理理, 钮瞭然, 洪流, 樊代明. 基于生物信息学对直肠癌中m6A调节因子介导相关修饰模式的分析[J]. 中华临床实验室管理电子杂志, 2022, 10(02): 65-75.

Wei Zhou, Shan Hu, Jinqiang Liu, Lili Duan, Liaoran Niu, Liu Hong, Daiming Fan. Analysis of m6A regulatory factor mediated modification patterns in rectal cancer based on Bioinformatics[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2022, 10(02): 65-75.

目的

探索N6-甲基腺嘌呤(m6A)修饰在肿瘤形成及与肿瘤微环境(TME)形成中的关系。

方法

基于23个m6A调节因子对288例直肠癌标本的m6A修饰模式进行综合评估,以确定直肠癌中m6A修饰模式和m6A相关基因特征,并评估基于PCA算法的m6A评分方案与免疫治疗反应之间的相关性。

结果

本研究分析了23个m6A调节因子在直肠癌中的表达和突变情况,及其与患者预后的关系,进一步在直肠癌样本中确定了三种不同的m6A修饰模式,分析其与不同的临床特征有关,并且证明m6A评分可以预测患者对抗PD-1/PD-L1免疫治疗的临床反应。

结论

m6A修饰异常与肿瘤的发生发展密切相关,并且在TME多样性和复杂性的形成中起着重要作用,评估肿瘤中的m6A修饰模式将有助于指导更有效的免疫治疗策略。

Objective

To explore the relationship between m6A modification and tumor microenvironment (TME).

Methods

The m6A modification pattern of 288 rectal cancer specimens was comprehensively evaluated based on 23 m6A regulators (RC) to determine the m6A modification pattern and m6A related gene characteristics in RC, and to evaluate the correlation between m6A scoring scheme based on PCA algorithm and immunotherapy response.

Results

This study analyzed the expression and mutation of 23 m6A regulatory factors in RC and their relationship with the prognosis of patient. Further, three different m6A modification modes were identified in RC samples, which were related to different clinical characteristics. It was proved that m6A score could predict the clinical response of patients to PD-1/PD-L1 immunotherapy.

Conclusions

This study showed that the abnormal m6A modification was closely related to the occurrence and development of tumors, and played an important role in the formation of diversity and complexity of TME. Evaluating the m6A modification mode in tumors will help to guide more effective immunotherapy strategies.

图1 直肠癌中m6A调节因子的遗传变异注:1A为23个m6A调控因子的PPI网络;1B为23个m6A调节因子的CNV突变频率;1C为染色体上m6A调节因子CNV改变的位置;1D为正常和直肠癌样本之间23种m6A调节因子mRNA表达水平的差异;1E为直肠癌中23个m6A甲基化修饰调节因子的相关性;1F为23种m6A调节因子在136例直肠癌患者中的突变频率;1G为m6A基因在ZC3H13基因不同突变组之间的差异情况
表1 直肠癌中m6A调节因子与直肠癌患者生存的关系
图2 直肠癌中m6A调节因子与生存的关系注:2A为直肠癌患者预后相关的m6A调节因子;2B为直肠癌中m6A调节因子的表达相互作用
图3 m6A修饰模式的确定注:3A通过m6A调节因子的表达相似性将直肠癌分为三型;3B为三个m6A分型的直肠癌患者生存曲线图;3C为三个m6A分型患者的临床症状热图;3D为23个m6A调节因子在三个基因分型中的表达。aP<0.05;bP<0.01;cP<0.001
图4 基于m6A分组间的DEGs构建基因分型注:4A通过m6A表型相关标记基因将直肠癌分为三型;4B为三个基因分型的直肠癌患者生存曲线图;4C为不同基因分型患者的临床症状热图;4D为23个m6A调节因子在三个基因分型中的表达。aP<0.05;bP<0.01;cP<0.001
图5 m6A评分预测免疫治疗的获益注:5A为m6A评分与免疫细胞的相关性;5B为低或高m6A评分组中5年内存活或死亡的患者比例;5C为存活和死亡患者的m6A评分;5D为低或高m6A评分组之间PD-L1表达的差异;5E为低或高m6A评分组在CTLA4抗体和PD-1抗体表达阳性(pos)和阴性(neg)时的表达水平
1
Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary MicroRNA processing[J]. Hepatology, 2017, 65(2): 529-543.
2
Patil DP, Chen CK, Pickering BF, et al. M(6)A RNA methylation promotes XIST-mediated transcriptional repression[J]. Nature, 2016, 537(7620): 369-373.
3
Wang X, Ma R, Zhang XL, et al. Crosstalk between N6-methyladenosine modification and circular RNAs: current understanding and future directions[J]. Mol Cancer, 2021, 20(1): 121.
4
Dixit D, Prager BC, Gimple RC, et al. The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells[J]. Cancer Discov, 2020, 11(2): 480-499.
5
Zhou ZJ, Lv JC, Yu H, et al. Mechanism of RNA modification N6-methyladenosine in human cancer[J]. Mol Cancer, 2020, 19(1): 104.
6
Chen B, Li Y, Song RF, et al. Functions of RNA N6-methyladenosine modification in cancer progression[J]. Mol Biol Rep, 2019, 46(2): 2567-2575.
7
Grady WM, Yu M, Markowitz SD. Epigenetic alterations in the gastrointestinal tract: current and emerging use for biomarkers of cancer[J]. Gastroenterology, 2020, 160(3): 690-709.
8
Morais M, Pinto DM, Machado JC, et al. Liquid biopsy for rectal cancer: A systematic review[J]. Eur J Surg Oncol, 2022, 48(1): 218-227.
9
Huyghe JR, Harrison TA, Bien SA, et al. Genetic architectures of proximal and distal colorectal cancer are partly distinct[J]. Gut, 2021, 70(7): 1325-1334.
10
Liu ZX, Li LM, Sun HL, et al. Link between m6A modification and cancers[J]. Front Bioeng Biotechnol, 2018, 6: 89.
11
Deng LJ, Deng WQ, Fan SR, et al. M6A modification: recent advances, anticancer targeted drug discovery and beyond[J]. Mol Cancer, 2022, 21(1): 52.
12
An YY, Duan H. The role of m6A RNA methylation in cancer metabolism[J]. Mol Cancer, 2022, 21(1): 14.
13
Cai CJ, Long J, Huang QQ, et al. M6A "writer" gene METTL14: A favorable prognostic biomarker and correlated with immune infiltrates in rectal cancer[J]. Front Oncol, 2021, 11: 615296.
14
Li M, Zha X, Wang SJ. The role of N6-methyladenosine mRNA in the tumor microenvironment[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2): 188522.
15
Si CH, Chen C, Guo YX, et al. Effect, mechanism, and applications of coding/non-coding RNA m6A modification in tumor microenvironment[J]. Front Cell Dev Biol, 2021, 9: 711815.
16
Zhang B, Wu Q, Li B, et al. m6A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancer[J]. Mol Cancer, 2020, 19(1): 53.
17
Zhuang JF, Lin CL, Ye JX. m6A RNA methylation regulators contribute to malignant progression in rectal cancer[J]. J Cell Physiol, 2020, 235(9): 6300-6306.
18
Chong W, Shang L, Liu J, et al. m6A regulator-based methylation modification patterns characterized by distinct tumor microenvironment immune profiles in colon cancer[J]. Theranostics, 2021, 11(5): 2201-2217.
19
Agatemor C, Middleton SAD, Toledo D. How pervasive are post-translational and -transcriptional modifications?[J]. Trends Cell Biol, 2021, S0962-8924(21)00228-2.
20
Zheng HX, Zhang XS, Sui N. Advances in the profiling of N6-methyladenosine (m6A) modifications[J]. Biotechnol Adv, 2020, 45: 107656.
21
Zhao YC, Chen YH, Jin M, et al. The crosstalk between m6A RNA methylation and other epigenetic regulators: A novel perspective in epigenetic remodeling[J]. Theranostics, 2021, 11(9): 4549-4566.
22
Uddin MB, Wang ZS, Yang CF. The m6A RNA methylation regulates oncogenic signaling pathways driving cell malignant transformation and carcinogenesis[J]. Mol Cancer, 2021, 20(1): 61.
23
Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 608-624.
24
Wang TY, Kong S, Tao M, et al. The potential role of RNA n6-methyladenosine in cancer progression[J]. Mol Cancer, 2020, 19(1): 88.
25
He LE, Li HY, Wu AQ, et al. Functions of n6-methyladenosine and its role in cancer[J]. Mol Cancer, 2019, 18(1): 176.
26
Hu BB, Wang XY, Gu XY, et al. N6-methyladenosine (m6A) RNA modification in gastrointestinal tract cancers: roles, mechanisms, and applications[J]. Mol Cancer, 2019, 18(1): 178.
27
Bechara R, Amatya N, Bailey RD, et al. The m6A reader IMP2 directs autoimmune inflammation through an IL-17- and TNFα-dependent C/EBP transcription factor axis[J]. Sci Immunol, 2021, 6(61): eabd1287.
28
Zong X, Xiao X, Shen B, et al. The N6-methyladenosine RNA-binding protein YTHDF1 modulates the translation of TRAF6 to mediate the intestinal immune response[J]. Nucleic Acids Res, 2021, 49(10): 5537-5552.
29
Du JY, Ji H, Ma S, et al. m6A regulator-mediated methylation modification patterns and characteristics of immunity and stemness in low-grade glioma[J]. Brief Bioinform, 2021, 22(5): bbab013.
30
Li JH, Wang WW, Zhou YB, et al. M6A regulator-associated modification patterns and immune infiltration of the tumor microenvironment in hepatocarcinoma[J]. Front Cell Dev Biol, 2021, 9: 687756.
[1] 张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(06): 808-817.
[2] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[3] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[4] 张焱辉, 张蛟, 朱志贤. 留置肛管在中低位直肠癌新辅助放化疗后腹腔镜TME术中的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 25-28.
[5] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[6] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[7] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[8] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[9] 倪文凯, 齐翀, 许小丹, 周燮程, 殷庆章, 蔡元坤. 结直肠癌患者术后发生延迟性肠麻痹的影响因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 484-489.
[10] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[11] 杨红杰, 张智春, 孙轶. 直肠癌淋巴结转移诊断研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 512-518.
[12] 马慧颖, 凡新苓, 覃仕瑞, 陈佳赟, 曹莹, 徐源, 金晶, 唐源. 磁共振加速器治疗局部晚期直肠癌的初步经验[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 519-523.
[13] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[14] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[15] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
阅读次数
全文


摘要