切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2023, Vol. 11 ›› Issue (04) : 193 -199. doi: 10.3877/cma.j.issn.2095-5820.2023.04.001

实验室管理

射频识别技术在临床病理科全流程管理中的应用
赵平, 廖昌友, 丁伟()   
  1. 310003 浙江杭州,浙江大学医学院附属第一医院病理科
    518118 广东深圳,达科为(深圳)医疗设备有限公司
  • 收稿日期:2022-02-23 出版日期:2023-11-28
  • 通信作者: 丁伟
  • 基金资助:
    浙江省自然科学基金(Y22H0910169)

Application of RFID technology in the whole process management of clinical pathology department

Ping Zhao, Changyou Liao, Wei Ding()   

  1. Department of Pathology, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou Zhejiang 310003, China
    Dakewe (Shenzhen) Medical Equipment Co., Ltd, Shenzhen Guangdong 518118, China
  • Received:2022-02-23 Published:2023-11-28
  • Corresponding author: Wei Ding
引用本文:

赵平, 廖昌友, 丁伟. 射频识别技术在临床病理科全流程管理中的应用[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 193-199.

Ping Zhao, Changyou Liao, Wei Ding. Application of RFID technology in the whole process management of clinical pathology department[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2023, 11(04): 193-199.

目的

射频识别(RFID)技术应用于临床病理科全流程管理,并验证其可行性及高效性。

方法

运用RFID技术管理临床病理科全流程。

结果

与传统的病理流程管理相比,该技术的运用不仅显著地提高了病理工作的效率,减少了检测误差,而且提升了病理检测的整体质量,进一步保证了患者的安全。

结论

RFID技术的应用将使临床病理检测的全流程信息管理自动化。

Objective

Radio frequency identification (RFID) technology has been applied to the whole process management of clinical pathology department, and its feasibility and high efficiency have been verified.

Methods

RFID technology was employed to manage the workflow in clinical pathology department.

Results

Compared to the traditional pathological process management, the use of RFID technology greatly reduces the detection errors, and markedly improves the efficiency of pathological work and the overall quality of pathological detection, further ensuring the safety of patients.

Conclusions

The application of RFID technology will automate the entire information management process of pathological detection.

图1 RFID系统中数据无线传输示意图
图2 RFID技术运用在临床病理科的主要流程
图3 病理仪器设备装配RFID读取仪位置 注:3A. 病理组织包埋盒打印机;3B. 脱水机;3C. 包埋机;3D. 切片机;3E. RFID电子标签打印机;3F. 自动封片机;3G. 显微镜的红色虚线区域装配RFID电子标签读取器。
图4 RFID读取标签数据示意图 注:4A. 用RFID电子标签读取器读取玻片或蜡块上的标签,同时向RFID电子标签写入实时信息。①脱水机包埋盒信息列表,②脱水机操作人员信息、时间、选择的脱水程序,③试剂详情及更换记录。4B. 包埋数据包括①包埋盒信息,②包埋进度提示,③包埋医嘱及包埋规范说明。4C. 载玻片标签打印信息包括①标本及蜡块信息,②医嘱信息及切片说明,③切片列表。4D. 展片-烤片数据包括①患者和蜡块信息,②切片列表。4E. 染色明细包括①染色中的载玻片列表,②选择的染色程序,③染色试剂及染色步骤,试剂的使用信息。设备信息监测显示在4A④、4B④、4D③和4E④。
图5 诊断阅片示意图 注:5A. 诊断时读取玻片上RFID电子标签后,切片信息显示在计算机上;①患者信息,②读取的切片数量核对,③切片质量控制评价信息,④病理诊断相关信息,⑤诊断快速模板,⑥未完成的诊断列表。5B. 蜡块/切片用RFID读取器转移到病理档案室中。5C. 计算机具体显示为①蜡块/切片的病理信息,②蜡块/切片的档案信息,③蜡块/切片交接信息。
图6 玻片或蜡块移交档案室RFID信息自动批量读取 注:使用RFID电子标签读取器自动识别待归档的切片或蜡块(6A,6D)。计算机中的存档信息(6C,6F)位于①病理号及切片或蜡块编号信息,②切片或蜡块存放柜信息,③切片或蜡块存放位置信息,包括已完成或未完成的归档。载玻片或蜡块存储柜识别号位于6B和6E的红色虚线区域。
1
MEHTA S, GRANT K, ATLIN C, et al. Mitigating staff risk in the workplace: The use of RFID technology during a COVID-19 pandemic and beyond[J]. BMJ health and care informatics, 2020, 27(3): e100230.
2
ANDO B, BAGLIO S, CASTORINA S, et al. An assistive technology solution for user activity monitoring exploiting passive RFID[J]. Sensors, 2020, 20(17): 4954.
3
CORCHES C, DARABAN M, MICLEA L. Availability of an RFID object-identification system in IoT environments [J]. Sensors, 2021, 21(18): 6220.
4
MC GEE K, ANANDARAJAH P, COLLINS D. A review of chipless remote sensing solutions based on RFID technology [J]. Sensors, 2019, 19(22): 4829.
5
ZHANG J, TIAN G Y, MARINDRA A M, et al. A review of passive RFID tag antenna-based sensors and systems for structural health monitoring applications[J]. Sensors, 2017, 17(2): 265.
6
PROFETTO L, GHERARDELLI M, IADANZA E. Radio Frequency Identification (RFID) in health care: Where are we? A scoping review[J]. Health and technology, 2022, 12(5): 879-891.
7
左娅佳, 曹志章. RFID技术在医院管理领域的应用[J]. 中国医院管理, 2005(9): 42-43.
8
DOBRYKH D, YUSUPOV I, GINZBURG P, et al. Self-aligning roly-poly RFID tag[J]. Scientific reports, 2022, 12(1): 2140.
9
ÁLVAREZ LóPEZ Y, FRANSSEN J, ÁLVAREZ NARCIANDI G, et al. RFID technology for nanagement and tracking: E-health applications[J]. Sensors, 2018, 18(8): 2663.
10
JI W, LI L, ZHOU W. Design and Implementation of a RFID reader/router in RFID-WSN hybrid system[J]. Future internet, 10(11): 106.
11
ZHOU W, PIRAMUTHU S. Framework, strategy and evaluation of health care processes with RFID[J]. Decision support systems, 2010, 50(1): 222-233.
12
GEARY U, WARD M E, CALLAN V, et al. A socio-technical systems analysis of the application of RFID-enabled technology to the transport of precious laboratory samples in a large acute teaching hospital[J]. Applied ergonomics, 2022, 102: 103759.
13
CHEN X, ZHANG X, GENG D, et al. A RFID Authentication protocol for epidemic prevention and epidemic emergency nanagement systems[J]. Journal of healthcare engineering, 2021, 2021: 1550993.
14
YANG S, CRISP M, PENTY R V, et al. RFID enabled health monitoring system for aircraft landing gear[J]. IEEE journal of radio frequency identification, 2018, 2(3): 159-169.
15
CHONG A Y-L, CHAN F T S. Structural equation modeling for multi-stage analysis on Radio Frequency Identification (RFID) diffusion in the health care industry[J]. Expert systems with applications, 2012, 39(10): 8645-8654.
16
Veronesi U, Cascinelli N, Mariani L, et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer[J]. The new england journal of medicine, 2002, 347(16): 1227-1232.
17
DEN DEKKER B M, CHRISTENHUSZ A, VAN DALEN T, et al. A multicenter prospective cohort study to evaluate feasibility of radio-frequency identification surgical guidance for nonpalpable breast lesions: Design and rationale of the RFID localizer 1 trial[J]. BMC cancer, 2022, 22(1): 305.
18
赵嘉, 郭岩, 杜雪杰, 等. RFID技术国内外医疗卫生领域应用现状及问题分析[J].中国卫生信息管理杂志, 2015, 12(6): 638-643.
19
CAREDDA V, ORRú P F, ROMAGNOLI G, et al. RFID technology for blood tracking: An experimental approach for benchmarking different devices[J]. International journal of RF technologies, 2016, 7(4): 209-228.
20
HUSÁR J, HREHOVÁ S, KAŠČÁK P. New approaches in management of smart manufacturing systems[M]. Cham, Switzerland: Springer, 2020: 91-111.
21
LEE J N, Hwang M Y, LEE S I, et al. Design of an ultra-compact UHF passive RFID tag antenna for a medical sample tube[J]. Electronics and telecommunications research institute journal, 2012, 34(6): 974-977.
22
NORGAN A P, SIMON K E, FEEHAN B A, et al. Radio-frequency Identification specimen tracking to improve quality in Anatomic Pathology [J]. Archives of pathology and laboratory medicine, 2020, 144(2): 189-195.
23
GUO K, XIE X, QI H, et al. A high time-efficient missing tag detection scheme for integrated RFID systems [J]. Sensors, 2022, 22(12): 4601.
24
李珍妮, 石巧红, 张欣, 等. 基于物联网技术的无纸化电子病案管理系统设计与应用[J]. 中国医学装备, 2020, 17(9): 181-186.
25
BROWNING L, WHITE K, SIIANKOSKI D, et al. RFID analysis of the complexity of cellular pathology workflow-an opportunity for digital pathology[J]. Frontiers in medicine, 2022, 9: 933933.
26
VAN DER TOGT R, BAKKER P J M, JASPERS M W M. A framework for performance and data quality assessment of Radio Frequency IDentification (RFID) systems in health care settings[J]. Journal of biomedical informatics, 2011, 44(2): 372-383.
27
LANDALUCE H, ARJONA L, PERALLOS A, et al. A review of IoT sensing applications and challenges using RFID and wireless sensor networks[J]. Sensors, 2020, 20(9): 2495.
28
PAN Q, NARAYANAN R M. Design of a covert RFID tag network for target discovery and target information routing[J]. Sensors, 2011, 11(10): 9242-9259.
29
LEEMA A A, HEMALATHA M. Proposed prediction algorithms based on hybrid approach to deal with anomalies of RFID data in healthcare [J]. Egyptian informatics journal, 2013, 14(2): 135-145.
30
RAKHA E A, TOSS M, SHIINO S, et al. Current and future applications of artificial intelligence in pathology: A clinical perspective[J]. Journal of clinical pathology, 2021, 74(7): 409-414.
No related articles found!
阅读次数
全文


摘要