切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2025, Vol. 13 ›› Issue (01) : 1 -10. doi: 10.3877/cma.j.issn.2095-5820.2025.01.001

实验研究

基于质谱法的胆汁酸和微量元素联合分析作为阿尔茨海默病预测标志物的应用
李悦1, 豆小文1, 纪翔1, 李瑞1, 刘婷1, 莫红梅1,()   
  1. 1. 518000 广东深圳,深圳大学第三附属医院医学检验科
  • 收稿日期:2024-05-10 出版日期:2025-02-28
  • 通信作者: 莫红梅
  • 基金资助:
    深圳市医学重点学科建设项目(SZXK054)深圳市科技计划基础研究项目(JCYJ20190812171215641)罗湖区软科学研究计划项目(LX20200513)

Application of combined mass spectrometry analysis of bile acids and trace elements as a predictive biomarker for Alzheimer's disease

Yue Li1, Xiaowen Dou1, Xiang Ji1, Rui Li1, Ting Liu1, Hongmei Mo1,()   

  1. 1. Medical Laboratory of the Third affiliated Hospital of Shenzhen University, Shenzhen Guangdong 518000,China
  • Received:2024-05-10 Published:2025-02-28
  • Corresponding author: Hongmei Mo
引用本文:

李悦, 豆小文, 纪翔, 李瑞, 刘婷, 莫红梅. 基于质谱法的胆汁酸和微量元素联合分析作为阿尔茨海默病预测标志物的应用[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(01): 1-10.

Yue Li, Xiaowen Dou, Xiang Ji, Rui Li, Ting Liu, Hongmei Mo. Application of combined mass spectrometry analysis of bile acids and trace elements as a predictive biomarker for Alzheimer's disease[J/OL]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2025, 13(01): 1-10.

目的

本研究旨在评估液相色谱串联质谱法(LC-MS/MS)分析15项胆汁酸(BAs)谱和电感耦合等离子体质谱法(ICP-MS)分析17项微量元素谱在阿尔茨海默病(AD)辅助预测诊断中的潜在临床应用价值。

方法

纳入2021年至2022年深圳大学第三附属医院神经内科和认知障碍科确诊的72名AD患者作为AD组,以及70名同期健康体检者作为对照组。通过LC-MS/MS技术定量分析血清中的15项BAs,以及ICP-MS技术定量分析全血中的17项微量元素。比较两组在BAs和微量元素水平上的差异,利用二分类logistic回归模型构建联合诊断模型,并绘制受试者工作特征(ROC)曲线,评估这些生物标志物在AD诊断中的应用价值。

结果

通过方法学验证,确认LC-MS/MS与ICP-MS的分析性能均达到试剂盒检测的严格标准。在AD组与对照组的生物标志物分析中,观察到AD组中的石胆酸(LCA)水平以及铁(Fe)和锶(Sr)的含量显著低于对照组(P<0.05),而镁(Mg)、钙(Ca)、锰(Mn)、铜(Cu)、硒(Se)和锂(Li)水平在AD患者中则显著高于对照组(P<0.05)。在构建的联合诊断模型中,LCA与Fe和Sr的组合展现出良好的预测能力,模型的曲线下面积(AUC)达到0.82,敏感度和特异度分别为93.8%和56.1%。另一模型,结合Mg、Ca、Mn、Cu和Se 5种标志物,同样表现出良好的预测效果,其AUC为0.80,敏感度和特异度分别为83.3%和68.3%。

结论

本研究揭示了AD患者体内BAs和微量元素稳态的显著失衡,特别是LCA、Fe、Sr的下降以及Mg、Ca、Mn、Cu、Se等元素的水平升高,这些生物标志物的变化有望成为AD的潜在预测指标,为疾病的早期诊断和潜在的生物学机制提供新的视角。

Objective

The study aims to evaluate the potential clinical application of combined 15 bile acids (BAs) using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and 17 trace elements using inductively coupled plasma mass spectrometry (ICP-MS) in the auxiliary predictive diagnosis of Alzheimer's disease (AD).

Methods

A total of 72 patients diagnosed with AD in the Neurology and Cognitive Disorder Departments of the Third affiliated Hospital of Shenzhen University from 2021 to 2022 were enrolled in the AD group, and 70 healthy individuals undergoing physical examinations during the same period were included as the control group. Quantification of 15 BAs in serum was performed using LC-MS/MS, while 17 trace elements in whole blood were quantified using ICP-MS. The differences in BAs and trace element levels between AD patients and healthy controls were compared. Logistic regression models were constructed for combined diagnostic analysis, and receiver operating characteristic (ROC) curves were plotted to evaluate the diagnostic value of these biomarkers in AD.

Results

Methodological validation confirmed that the analytical performance of LC-MS/MS and ICP-MS met the stringent standards required by the assay kits. In the biomarker analysis comparing AD group and healthy controls, significantly lower levels of lithocholic acid (LCA), ferrum (Fe), and strontium (Sr)were observed in AD group (P<0.05). Conversely, levels of magnesium (Mg), calcium (Ca), manganese(Mn), copper (Cu), selenium (Se), and lithium (Li) were significantly higher in AD patients (P<0.05).The combined diagnostic model of LCA with Fe and Sr demonstrated good predictive ability, with an area under the curve (AUC) of 0.82, sensitivity of 93.8%, and specificity of 56.1%. Another model combining Mg, Ca, Mn, Cu, and Se also exhibited good predictive performance, with an AUC of 0.80, sensitivity of 83.3%, and specificity of 68.3%.

Conclusion

This study reveals significant imbalances in BAs and trace elements in patients with AD, particularly the decreased levels of LCA, Fe, and Sr, and the increased levels of Mg, Ca, Mn, Cu, and Se. These changes have the potential to serve as predictive biomarkers for AD, providing new insights into the biological pathways involved in the disease and offering potential avenues for early diagnosis.

表1 LC-MS/MS测定15项BAs水平的线性范围、LOQ和精密度
表2 LC-MS/MS检测15项BAs的正确度结果(n=5)
表3 ICP-MS测定17项微量元素的线性范围、LOQ和精密度结果
元素 线性范围 r LOQ(n=10) bias(n=10)/% CV(n=10)/% 低水平(n=5) 高水平(n=5)
低水平 批内CV/% 总CV/% 高水平 批内CV/% 总CV/%
Mg/ (mmol/L) 0.002 5~3.358 1 0.999 976~0.999 997 0.083 3 2 0.92 1.33 1.37 2.07 2.80 2.54
Ca/(mmol/L) 0.010 0~7.358 2 0.999 993~0.999 999 0.180 0 2 1.02 1.61 1.70 2.16 2.18 2.25
V/(μg/L) 0.887 8~191.197 1 0.999 978~0.999 994 4.792 0 5 13.90 4.31 3.84 55.62 3.09 2.61
Fe/(mmol/L) 0.002 1~23.723 5 0.999 844~0.999 963 0.567 1 4 3.93 1.03 2.02 8.90 2.22 3.29
Mn/(μg/L) 0.462 0~239.824 7 0.999 990~0.999 999 5.993 -1 5 18.15 2.90 2.54 47.48 3.50 3.31
Co/(μg/L) 0.129 8~61.275 4 0.999 923~0.999 999 1.489 2 4 4.73 2.58 2.58 18.61 2.38 2.61
Cu/(μmol/L) 0.044 0~131.022 2 0.999 910~0.999 991 3.213 8 3 13.93 2.04 2.17 36.05 2.87 3.02
Zn/(μmol/L) 0.669 2~379.129 5 0.999 948~0.999 996 9.317 5 7 39.17 1.65 2.93 114.08 2.03 2.17
As/(μg/L) 0.976 6~414.820 7 0.999 982~0.999 997 10.273 3 4 20.85 5.11 4.40 79.82 2.34 2.67
Li/(μg/L) 0.263 1~400.215 2 0.999 997~0.999 999 9.988 0 2 22.64 2.18 2.35 79.89 2.12 2.85
Se/(μg/L) 8.780 6~1007.488 1 0.999 991~0.999 999 24.437 -1 8 149.98 1.73 1.84 405.63 2.21 2.14
Sr/(μg/L) 0.338 4~316.849 5 0.999 986~1.000 000 7.797 1 5 41.70 3.21 3.73 83.33 1.96 2.51
Cd/(μg/L) 0.103 9~206.962 1 0.999 997~0.999 998 5.189 1 2 19.21 1.44 1.86 75.88 1.43 1.98
Hg/(μg/L) 0.997 2~209.872 3 0.999 963~0.999 998 5.239 -6 9 14.69 2.61 4.04 59.51 2.66 2.83
Tl/(μg/L) 0.035 6~125.407 5 0.999 965~0.999 998 3.113 3 2 4.73 2.33 2.19 19.18 2.06 1.85
Pb/(μg/L) 0.347 0~422.999 4 0.999 977~0.999 998 10.431 2 2 51.58 2.62 2.85 193.01 2.29 2.34
Bi/(μg/L) 0.295 2~251.289 3 0.999 949~0.999 999 6.266 3 2 9.48 2.06 2.65 35.76 1.96 2.14
表4 ICP-MS检测17项微量元素的正确度结果(n=5)
续表5
分析物 AD 组 对照组 P
CDCA 260.000(73.325,631.000) 156.000(53.350,420.000) 0.111
GCDCA 374.000(178.000,726.000) 356.000(203.000,686.000) 0.854
TCDCA 32.200(18.550,84.725) 47.300(21.125,87.725) 0.336
CDCA+GCDCA+TCDCA 771.000(427.000,1499.000) 747.000(347.000,1219.000) 0.465
CA 52.350(14.551,217.000) 43.750(12.970,125.000) 0.258
GCA 50.450(28.044,116.000) 40.550(28.040,148.000) 0.891
TCA / / /
CA+GCA+TCA 167.000(84.330,393.000) 140.000(65.583,318.000) 0.159
DCA 157.000(46.750,318.000) 129.000(37.625,217.000) 0.161
GDCA 69.550(26.075,145.000) 66.600(15.140,137.000) 0.722
TDCA 8.130(5.190,19.325) 5.190(5.190,15.525) 0.526
DCA+GDCA+TDCA 268.000(101.000,531.000) 210.000(71.810,412.000) 0.303
UDCA 52.600(12.077,121.000) 31.950(12.080,84.000) 0.133
GUDCA 53.450(17.551,129.000) 48.900(17.550,127.000) 0.821
TUDCA 2.432(2.432,4.600) 2.432(2.432,3.785) 0.537
UDCA+GUDCA+TUDCA 114.000(50.315,270.000) 89.730(47.513,193.000) 0.275
LCA 3.111(3.111,7.248) 6.145(3.111,12.050) 0.006
GLCA 2.475(2.475,5.883) 2.480(2.480,5.913) 0.932
TLCA / / /
15 项BAs 总和 1477.000(897.000,2556.000) 1260.000(762.000,2230.000) 0.190
Mg 1.561(1.140,1.697) 1.481(1.357,1.571) 0.034
分析物 AD 组 对照组 P
Ca 1.295(1.144,1.437) 1.187(1.127,1.265) 0.023
V / / /
Fe 6.935±1.140 7.862±0.902 <0.001
Mn 12.285±3.202 9.732±3.176 <0.001
Co / / /
Cu 12.745(11.770,13.685) 12.088(10.782,12.937) 0.019
Zn 90.859(81.617,106.126) 88.219(80.960,100.139) 0.307
As 7.264(7.264,7.264) 7.264(7.264,7.264) 0.503
Se 104.299(17.280,198.825) 17.280(17.280,124.918) 0.002
Sr 36.839(20.803,101.351) 114.476(26.062,136.938) <0.001
Li 7.063(7.063,7.063) 7.063(7.063,12.262) 0.021
Cd / / /
Hg / / /
Tl / / /
表6 LCA和元素单独检测及联合标志物ROC曲线分析
图1 LCA和元素单独检测及联合预测模型ROC曲线分析 注:1A为Fe、Sr和LCA的联合预测模型;1B为Ca、Mg、Mn、Cu和Se的联合预测模型。
表7 二元logistic回归分析结果
1
MAHMOUDIANDEHKORDI S, ARNOLD M, NHO K, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer's disease-An emerging role for gut microbiome[J]. Alzheimer's &dementia: The journal of the Alzheimer's Association, 2019, 15(1): 76-92.
2
GRANT S M, DEMORROW S. Bile acid signaling in neurodegenerative and neurological disorders[J]. International journal of molecular sciences, 2020, 21(17): 5982.
3
BALONI P, FUNK C C, YAN J, et al. Metabolic network analysis reveals altered bile acid synthesis and metabolism in Alzheimer's disease[J]. Cell reports. Medicine, 2020, 1(8): 100138.
4
李悦, 豆小文, 纪翔, 等. 胆汁酸稳态失衡与阿尔茨海默病研究新进展[J]. 阿尔茨海默病及相关病杂志, 2022, 5(3): 242-247.
5
MULAK A. Bile acids as key modulators of the Brain-gut-microbiota axis in Alzheimer's disease[J]. Journal of Alzheimer's disease, 2021,84(2): 461-477.
6
CILLIERS K. Trace element alterations in Alzheimer's disease:A review[J]. Clinical anatomy: Official journal of the American Association of Clinical Anatomists & the British Association of Clinical Anatomists, 2021, 34(5): 766-773.
7
DAS N, RAYMICK J, SARKAR S. Role of metals in Alzheimer's disease[J]. Metabolic brain disease, 2021, 36(7): 1627-1639.
8
HUAT T J, CAMATS-PERNA J, NEWCOMBE E A, et al. Metal toxicity links to Alzheimer's disease and neuroinflammation[J]. Journal of molecular biology, 2019, 431(9): 1843-1868.
9
ADLARD P A, BUSH A I. Metals and Alzheimer's disease[J]. Journal of Alzheimer's disease, 2006, 10(2-3): 145-163.
10
MCKHANN G, DRACHMAN D, FOLSTEIN M, et al. Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease[J]. Neurology, 1984, 34(7):939-944.
11
高晶, 毛晨晖, 郭玉璞. 2018年美国国家衰老研究院-阿尔茨海默协会生物学定义阿尔茨海默病的研究框架解读[J]. 中华神经科杂志,2019, 52(2): 157-160.
12
CLINICAL AND LABORATORY STANDARDS INSTITUTE.EP15-A3 User verification of precision and estimation of bias;Approved guideline-third edition[S]. USA, 2014.
13
中华医学会检验医学分会, 卫生计生委临床检验中心. 液相色谱-质谱临床应用建议[J]. 中华检验医学杂志, 2017, 40(10): 770-779.
14
HORNUNG R W, REED L D. Estimation of average concentration in the presence of nondetectable values[J]. Applied occupational and environmental hygiene, 1990, 5(1): 46-51.
15
GHAISAS S, MAHER J, KANTHASAMY A. Gut microbiome in health and disease: Linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases[J]. Pharmacology & therapeutics, 2016,158: 52-62.
16
TREMLETT H, BAUER K C, APPEL-CRESSWELL S, et al. The gut microbiome in human neurological disease: A review[J]. Annals of neurology, 2017, 81(3): 369-382.
17
RIDLON J M, KANG D J, HYLEMON P B, et al. Bile salt biotransformations by human intestinal bacteria[J]. Journal of lipid research, 2006, 47(2): 241-259.
18
RIDLON J M, KANG D J, HYLEMON P B, et al. Bile acids and the gut microbiome[J]. Current opinion in gastroenterology, 2014, 30(3):332-338.
19
SZABLEWSKI L. Human gut microbiota in health and Alzheimer's disease[J]. Journal of Alzheimer's disease, 2018, 62(2): 549-560.
20
MARKSTEINER J, BLASKO I, KEMMLER G, et al. Bile acid quantification of 20 plasma metabolites identifies lithocholic acid as a putative biomarker in Alzheimer's disease[J]. Metabolomics: Official journal of the metabolomic society, 2018, 14(1): 1.
21
ISLAM K B, FUKIYA S, HAGIO M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats[J].Gastroenterology, 2011, 141(5): 1773-1781.
22
WANG L, YIN Y L, LIU X Z, et al. Current understanding of metal ions in the pathogenesis of Alzheimer's disease[J]. Translational neurodegeneration, 2020, 9: 10.
23
CHAKROBORTY S, STUTZMANN G E. Calcium channelopathies and Alzheimer's disease: Insight into therapeutic success and failures[J]. European journal of pharmacology, 2014, 739: 83-95.
24
TONG B C, WU A J, LI M, et al. Calcium signaling in Alzheimer's disease & therapies[J]. Biochimica et biophysica acta. Molecular cell research, 2018, 1865(11 Pt B): 1745-1760.
25
CHAMI M. Calcium signalling in Alzheimer's disease: From pathophysiological regulation to therapeutic approaches[J]. Cells,2021, 10(1): 140.
26
CALVO-RODRIGUEZ M, KHARITONOVA E K, BACSKAI B J.Therapeutic strategies to target calcium dysregulation in Alzheimer's disease[J]. Cells, 2020, 9(11): 2513.
27
DU K, ZHENG X, MA Z T, et al. Association of circulating magnesium levels in patients with Alzheimer's disease from 1991 to 2021: A systematic review and meta-analysis[J]. Frontiers in aging neuroscience, 2022, 13: 799824.
28
TAMM C, SABRI F, CECCATELLI S. Mitochondrial-mediated apoptosis in neural stem cells exposed to manganese[J]. Toxicological sciences: An official journal of the Society of Toxicology, 2008,101(2): 310-320.
29
MAEDA M, TAKAGI H, HATTORI H, et al. Localization of manganese superoxide dismutase in the cerebral cortex and hippocampus of Alzheimer-type senile dementia[J]. Osaka city medical journal, 1997, 43(1): 1-5.
30
DU K, LIU M, PAN Y, et al. Association of serum manganese levels with Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis[J]. Nutrients, 2017, 9(3): 231.
31
NEGAHDAR H, HOSSEINI S R, PARSIAN H, et al. Homocysteine,trace elements and oxidant/antioxidant status in mild cognitively impaired elderly persons: A cross-sectional study[J]. Romanian journal of internal medicine, 2015, 53(4): 336-342.
32
PATEL R, ASCHNER M. Commonalities between copper neurotoxicity and Alzheimer's disease[J]. Toxics, 2021, 9(1): 4.
33
AGARWAL P, AYTON S, AGRAWAL S, et al. Brain copper may protect from cognitive decline and Alzheimer's disease pathology: A community-based study[J]. Molecular psychiatry, 2022, 27(10): 4307-4313.
34
OLDE RIKKERT M G, VERHEY F R, SIJBEN J W, et al. Differences in nutritional status between very mild Alzheimer's disease patients and healthy controls[J]. Journal of Alzheimer's disease, 2014, 41(1):261-271.
35
R CARDOSO B, HARE D J, LIND M, et al. The APOE epsilon4 allele is associated with lower selenium levels in the brain: Implications for Alzheimer's disease[J]. ACS chemical neuroscience, 2017, 8(7): 1459-1464.
36
CARDOSO B R, HARE D J, BUSH A I, et al. Selenium levels in serum, red blood cells, and cerebrospinal fluid of Alzheimer's disease patients: A report from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL)[J]. Journal of Alzheimer's disease,2017, 57(1): 183-193.
37
FORLENZA O V, RADANOVIC M, TALIB L L, et al. Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: Randomised clinical trial[J]. The British journal of psychiatry: The journal of mental science, 2019,215(5): 668-674.
38
PENG Y, CHANG X, LANG M. Iron homeostasis disorder and Alzheimer's disease[J]. International journal of molecular sciences,2021, 22(22): 12442.
39
ALTOMARE D, STAMPACCHIA S, RIBALDI F, et al. Plasma biomarkers for Alzheimer's disease: A field-test in a memory clinic[J].Journal of neurology, neurosurgery, and psychiatry, 2023, 94(6): 420-427.
40
IACCARINO L, BURNHAM S C, DELL'AGNELLO G, et al.Diagnostic biomarkers of amyloid and Tau pathology in Alzheimer's disease: An overview of tests for clinical practice in the United States and Europe[J]. Journal of prevention of Alzheimer's disease, 2023,10(3): 426-442.
[1] 中华医学会肠外肠内营养学分会. 中国成人患者微营养素临床应用指南(2024版)[J/OL]. 中华普通外科学文献(电子版), 2024, 18(03): 161-182.
[2] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[3] 王江波, 尹一鸣, 张冠群. 外周血生物标志物在阿尔茨海默病早期诊断中的价值[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 244-249.
[4] 李苒, 姜宇航, 陈泽浩, 何家恺, 闫珊珊, 鄢锦荣, 贾宝辉. 电针治疗阿尔茨海默病患者的先导性随机对照试验[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 218-224.
[5] 杨森, 阙玉梅, 丁莉, 王艺瑾, 侯庆宇. Hcy和AD7c-NTP在阿尔茨海默病诊断中的临床应用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 208-212.
[6] 张萌, 喻中华. 阿尔茨海默病患者血清脂联素、Lp-PLA2、IL-17的表达及与认知功能的相关性分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 358-363.
[7] 杜宝静, 李敏叶, 王云霞, 申永静, 谈威威. 轮状病毒感染相关腹泻患儿肠道菌群特征与血清锌、肌酸激酶同工酶及炎症因子的关系[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(01): 78-82.
[8] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
[9] 韦美菊, 潘玲. 肠道菌群-胆汁酸代谢轴在慢性肾脏病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 219-222.
[10] 陈晓丹, 李淑霞, 薛婷, 侯红瑛, 韩振艳. FGF19在妊娠期肝内胆汁淤积症患者血清中的表达水平及相关因素分析[J/OL]. 中华产科急救电子杂志, 2023, 12(04): 239-243.
[11] 袁紫嫣, 姚春玲, 石江伟. 基于大脑类淋巴系统清除机制探讨针刺治疗阿尔茨海默病的研究进展[J/OL]. 中华针灸电子杂志, 2025, 14(01): 28-33.
[12] 刘霖, 张文欢, 宋雅茹, 姜云璐. Apelin-13 在阿尔茨海默病中的神经保护作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 276-280.
[13] 陆静, 钟为慧, 赵杰, 曾玲晖. 髓系细胞触发受体2在β淀粉样蛋白病理致阿尔茨海默病中的作用机制[J/OL]. 中华老年病研究电子杂志, 2024, 11(01): 51-56.
[14] 赵晓晓, 邱嘉婷, 张懿姝, 张蓉, 张棚, 刘晓蕾. 丁苯酞在各类型认知障碍治疗中的应用研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 19-26.
[15] 曾德阳, 董贺千禧, 陶凉, 肖红艳, 曾燕, 鄢华. 中年心血管危险因素增加阿尔茨海默病相关痴呆的流行病学和机制研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 6-13.
阅读次数
全文


摘要