切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2025, Vol. 13 ›› Issue (04) : 206 -212. doi: 10.3877/cma.j.issn.2095-5820.2025.04.003

实验研究

基于荧光免疫层析技术建立SARS-CoV-2中和抗体检测方法及其性能评价
张浩名1,2, 曾志奇1, 刘勇1,2,()   
  1. 1 511436 广东广州,广州医科大学金域检验学院
    2 510005 广东广州,广州金域医学检验中心有限公司
  • 收稿日期:2024-10-31 出版日期:2025-11-28
  • 通信作者: 刘勇
  • 基金资助:
    广州国家实验室项目(GZNL2024A01004)

Development and performance evaluation of a SARS-CoV-2 neutralizing antibody assay using fluorescent immunochromatography

Haoming Zhang1,2, Zhiqi Zeng1, Yong Liu1,2,()   

  1. 1 KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou Guangdong 511436, China
    2 Guangzhou KingMed Center for Clinical Laboratory, Guangzhou Guangdong 510005, China
  • Received:2024-10-31 Published:2025-11-28
  • Corresponding author: Yong Liu
引用本文:

张浩名, 曾志奇, 刘勇. 基于荧光免疫层析技术建立SARS-CoV-2中和抗体检测方法及其性能评价[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(04): 206-212.

Haoming Zhang, Zhiqi Zeng, Yong Liu. Development and performance evaluation of a SARS-CoV-2 neutralizing antibody assay using fluorescent immunochromatography[J/OL]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2025, 13(04): 206-212.

目的

为评价SARS-CoV-2疫苗接种或感染后的免疫应答水平,开发一种基于荧光免疫层析技术的中和抗体(NAb)检测方法并初步进行性能评价。

方法

采用免疫层析技术与竞争法,检测条上固定标记有荧光微球的受体结合域,并包被血管紧张素转换酶2及羊抗免抗体的膜,通过荧光信号进行定量检测血清或血浆中的SARS-CoV-2 NAb。

结果

该方法检测SARS-CoV-2 NAb的两个浓度(906 IU/ml和1865 IU/ml)的质控品,批内变异系数(CV)分别为10.16%和8.20%;批间CV分别为10.43%和9.48%。该方法与其他抗体无交叉反应,表现出良好的特异性,最低检测浓度为125 IU/ml,最佳测定范围为125~3600 IU/ml。该方法与假病毒中和试验(pVNT)方法的总符合率为87%,阳性符合率为85%,阴性符合率为100%。此外,Kappa系数为0.54(P<0.001),表明层析法与pVNT结果具有中等一致性。

结论

开发的基于荧光免疫层析技术的NAb检测方法检测人血NAb快速且准确,适合于评估疫苗的效果和SARS-CoV-2感染患者治疗效果。

Objective

To develop and evaluate the immune response levels following SARS-CoV-2 vaccination or infection, a neutralizing antibody detection method based on fluorescent immunochromatography was developed and subsequently subjected to preliminary performance assessment.

Methods

The fluorescent immunochromatographic assay employs a competitive format. The test strip is coated with fluorescent microspheres-labeled receptor-binding domain and immobilized angiotensin-converting enzyme 2 along with sheep anti-mouse antibodies. This configuration enables quantitative detection of SARS-CoV-2 neutralizing antibodies in serum or plasma through fluorescence signals.

Results

The method quantifies neutralizing antibodies for SARS-CoV-2 at two concentrations (906 IU/ml and 1865 IU/ml), with within-batch coefficients of variation of 10.16% and 8.20%, respectively. The between-batch coefficients of variation are 10.43% and 9.48%, respectively. This method exhibits no cross-reactivity with other antibodies, indicating robust specificity. Analytical sensitivity showed a limit of detection concentration is 125 IU/ml, with an optimal measurement range spanning 125-3600 IU/ml. The total concordance rate with the pseudovirus neutralization test (pVNT) method is 87%, with a positive concordance rate of 85% and a negative concordance rate of 100%. In addition, the Kappa coefficient was 0.54 (P<0.001), indicating that the chromatography method had moderate consistency with the pVNT results.

Conclusion

This rapid and accurate fluorescent immunochromatographic assay provides a reliable tool for evaluating vaccine efficacy and treatment outcomes in SARS-CoV-2 patients.

图1 免疫荧光层析检测SARS-CoV-2 NAb阳性样本的过程 注:血清或血浆中的NAb经过T区时被ACE2截获,时间分辨荧光微球标记的RBD经过T区截获后进入C区被再次截获。T区的信号越强,说明时间分辨荧光微球标记的RBD截获得越多,表示NAb浓度越低;反之,时间分辨荧光微球标记的RBD截获得越少,表示NAb浓度越高。
表1 检测不同浓度SARS-CoV-2 NAb WHO标准品的偏差
表2 其他病原体NAb交叉反应检测结果
表3 批内精密度测量结果/IU/ml
表4 批间精密度测量结果/IU/ml
表5 7个不同浓度样本的准确度及CV值
表6 层析法与pVNT结果的符合率比较
表7 Kappa一致性分析表格/例
1
CERVIA C, NILSSON J, ZURBUCHEN Y, et al. Systemic and mucosal antibody responses specific to SARS-CoV-2 during mild versus severe COVID-19[J]. The journal of allergy and clinical immunology, 2021, 147(2): 545-557.
2
SHANG J, YE G, SHI K, et al. Structural basis of receptor recognition by SARS-CoV-2[J]. Nature, 2020, 581(7807): 221-224.
3
LAN J, GE J, YU J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor[J]. Nature, 2020, 581(7807): 215-220.
4
WALLS A C, PARK Y J, TORTORICI M A, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2): 281-292.
5
ZHOU P, YANG X L, WANG X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798): 270-273.
6
WANG Q, ZHANG Y, WU L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2[J]. Cell, 2020, 181(4): 894-904.
7
WU L, CHEN Q, LIU K, et al. Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2[J]. Cell discovery, 2020, 6: 68.
8
FINKELSTEIN M T, MERMELSTEIN A G, PARKER MILLER E, et al. Structural analysis of neutralizing epitopes of the SARS-CoV-2 spike to guide therapy and vaccine design strategies[J]. Viruses, 2021, 13(1): 134.
9
PICCOLI L, PARK Y J, TORTORICI M A, et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology[J]. Cell, 2020, 183(4): 1024-1042.e21.
10
LIU L, WANG P, NAIR M S, et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike[J]. Nature, 2020, 584(7821): 450-456.
11
杨振宇, 张临政, 刘俊香. 冠状病毒治疗性抗体专利分析[J]. 中国发明与专利, 2020, 17(3): 23-29.
12
毛亚萍, 卞大伟. SARS-CoV-2毒株S蛋白突变及其影响的生物信息学分析[J]. 病毒学报, 2020, 36(6): 1020-1027.
13
GARCIA-BELTRAN W F, LAM E C, ST DENIS K, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity[J]. Cell, 2021, 184(9): 2523.
14
DAN J M, MATEUS J, KATO Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection[J]. Science, 2021, 371(6529): eabf4063.
15
WIDGE A T, ROUPHAEL N G, JACKSON L A, et al. Durability of responses after SARS-CoV-2 mRNA-1273 vaccination[J]. The New England journal of medicine, 2021, 384(1): 80-82.
16
GAEBLER C, WANG Z, LORENZI J C C, et al. Evolution of antibody immunity to SARS-CoV-2[J]. Nature, 2021, 591(7851): 639-644.
17
聂倩文. 新冠中和抗体ELISA检测方法的建立[D]. 长春:长春理工大学, 2023.
18
KHOURY D S, WHEATLEY A K, RAMUTA M D, et al. Measuring immunity to SARS-CoV-2 infection: Comparing assays and animal models[J]. Nature reviews. Immunology, 2020, 20(12): 727-738.
19
XIONG H L, WU Y T, CAO J L, et al. Robust neutralization assay based on SARS-CoV-2 S-protein-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressing BHK21 cells[J]. Emerging microbes & infections, 2020, 9(1): 2105-2113.
20
TORTORICI M A, BELTRAMELLO M, LEMPP F A, et al. Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms[J]. Science, 2020, 370(6519): 950-957.
21
刘巨钊, 杨玉萍, 徐建波, 等. 新冠病毒S蛋白RBD突变侵染性增强潜在分子作用机制[J].生物学杂志, 2022, 39(6): 35-40.
22
LIU L, WANG P, NAIR M S, et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike[J]. Nature, 2020, 584(7821): 450-456.
23
JU B, ZHANG Q, GE J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection[J]. Nature, 2020, 584(7819): 115-119.
24
DUAN X, SHI Y, ZHANG X, et al. Dual-detection fluorescent immunochromatographic assay for quantitative detection of SARS-CoV-2 spike RBD-ACE2 blocking neutralizing antibody[J]. Biosensors & bioelectronics, 2022, 199: 113883.25.
25
国家药品监督管理局. YY/T 1789.4-2022 体外诊断检验系统 性能评价方法 第4部分:线性区间与可报告区间[S]. 北京:中国标准出版社, 2022.
26
国家药品监督管理局. YY/T 1588-2018 降钙素原测定试剂盒[S]. 北京:中国标准出版社, 2018.
27
XIA S, ZHANG Y, WANG Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial[J]. The Lancet. Infectious diseases, 2021, 21(1): 39-51.
28
XIA S, DUAN K, ZHANG Y, et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: Interim analysis of 2 randomized clinical trials[J]. JAMA, 2020, 324(10): 951-960.
29
LI G, FAN Y, LAI Y, et al. Coronavirus infections and immune responses[J]. Journal of medical virology, 2020, 92(4): 424-432.
30
VANBLARGAN L A, ERRICO J M, HALFMANN P J, et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies[J]. Nature medicine, 2022, 28(3): 490-495.
31
FLACCO M E, ACUTI MARTELLUCCI C, BACCOLINI V, et al. Risk of reinfection and disease after SARS-CoV-2 primary infection: Meta-analysis[J]. European journal of clinical investigation, 2022, 52(10): e13845.
32
张颖, 谢学建, 于小迪, 等. 上海某方舱医院新型冠状病毒奥密克戎变异株感染者流行病学特征分析[J]. 传染病信息, 2022, 35(4): 311-315, 341.
[1] 钱雅君, 虞竹溪, 徐颖, 董丹江, 顾勤. 危重型新型冠状病毒感染合并侵袭性肺曲霉病的临床特征和高危因素分析[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(01): 3-9.
[2] 董凯华, 姚艳青, 苗敏. Omicron变异株流行期间妊娠晚期孕产妇感染新型冠状病毒对母婴临床结局的影响[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(05): 298-306.
[3] 石宛鑫, 商子梦, 吴桐, 卢帅, 邱倩, 徐艳利, 张强, 江宇泳, 刘秀颖, 蒋协远, 杨志云. 新型冠状病毒感染后中老年人维生素D缺乏对骨质疏松患病风险的影响[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(03): 136-145.
[4] 徐保平, 彭怀文, 喻怀斌, 王晓涛. 新型冠状病毒肺炎继发糖尿病酮症酸中毒合并肝门静脉积气一例[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 250-255.
[5] 刘路浩, 张鹏, 陈荣鑫, 郭予和, 尹威, 徐璐, 李光辉, 方佳丽, 马俊杰, 陈正. 奈玛特韦/利托那韦治疗肾移植术后重型新型冠状病毒肺炎的临床效果分析[J/OL]. 中华移植杂志(电子版), 2023, 17(06): 349-353.
[6] 李晓宇, 许昕, 谌诚, 张萌, 韩文科, 林健. 肾移植受者新型冠状病毒感染合并肺炎支原体感染临床特点及诊疗分析[J/OL]. 中华移植杂志(电子版), 2023, 17(06): 354-357.
[7] 张今宜, 李月红. 慢性肾脏病患者接种新型冠状病毒疫苗有效力及接种策略的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 97-100.
[8] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[9] 王晶晶, 谢晖, 邓璞钰, 张晨晨, 田学, 谢云, 王瑞兰. 新型冠状病毒感染ARDS患者EIT监测下俯卧位通气成像的改变[J/OL]. 中华重症医学电子杂志, 2024, 10(01): 31-37.
[10] 刘付蓉, 翁利, 杜斌. 2020年至2022年中国重症医学临床研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(01): 48-53.
[11] 李浩南, 张煜彭, 付焱, 冯继伟, 刘凯, 张文凯. 缝隙连接蛋白43在肺部疾病中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(01): 60-65.
[12] 倪世豪, 董晓明, 刘浩辉, 何星灵, 刘东华, 李姿儒, 李思静, 姜艳辉, 黄婕, 张小娇, 鲁路, 杨忠奇. 治疗新型冠状病毒感染中成药的临床证据分析[J/OL]. 中华临床医师杂志(电子版), 2023, 17(12): 1253-1269.
[13] 葛静萍, 尹媛媛, 李燕. 梯度压力袜联合间歇充气加压在老年新型冠状病毒肺炎患者预防下肢深静脉血栓形成中的应用[J/OL]. 中华介入放射学电子杂志, 2024, 12(01): 70-74.
[14] 麦芷桐, 李倩颖, 曾志奇, 陈瑞晗, 梁靖怡, 陈瑞凤, 关文达, 杨子峰. 两种新型冠状病毒抗体快速检测方法的评价与应用[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(03): 135-142.
[15] 张宇, 王林. 急诊内科老年新型冠状病毒感染患者低钠血症发生情况调查分析[J/OL]. 中华老年病研究电子杂志, 2024, 11(02): 10-14.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?