切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2013, Vol. 01 ›› Issue (01) : 55 -60. doi: 10.3877/cma.j.issn.2095-5820.2013.01.011

实验研究

人尿中微小RNA的稳定性及其诊断肾损伤的价值
刘洋1, 梁红艳1, 高光强1, 姜晓峰1,()   
  1. 1.150001 哈尔滨医科大学附属第四临床医学院检验科
  • 收稿日期:2013-08-12 出版日期:2013-11-28
  • 通信作者: 姜晓峰

The stability of human urine microRNA-126 and its diagnosis value for the renal injury

Yang Liu1, Hongyan Liang1, Guangqiang Gao1, Xiaofeng Jiang1,()   

  1. 1.Department of Clinical Laboratory, the Fourth Clinical College, Harbin Medical University, Harbin 150001, China
  • Received:2013-08-12 Published:2013-11-28
  • Corresponding author: Xiaofeng Jiang
引用本文:

刘洋, 梁红艳, 高光强, 姜晓峰. 人尿中微小RNA的稳定性及其诊断肾损伤的价值[J/OL]. 中华临床实验室管理电子杂志, 2013, 01(01): 55-60.

Yang Liu, Hongyan Liang, Guangqiang Gao, Xiaofeng Jiang. The stability of human urine microRNA-126 and its diagnosis value for the renal injury[J/OL]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2013, 01(01): 55-60.

目的

分析多种实验因素对微小RNA(microRNA, miRNA)-126的影响,并探讨其在临床诊断肾损伤的价值。

方法

采用配对实验设计和单变量方差分析方法评估不同孵育时间、储存温度、反复冻融次数、pH值、微量蛋白浓度等因素对尿液中miRNA-126稳定性的影响;用实时定量PCR检测139例肾损伤患者和69名健康体检者尿miRNA-126的表达水平。然后,分别用t检验和ROC曲线评价尿中miRNA-126在肾损伤组与健康对照组的差异程度及其对临床肾损伤诊断的价值。

结果

尿标本中miRNA-126在不同存储温度(室温、4、-20、-80℃)分别为3.81±0.33、3.78±0.32、3.83±0.43、3.69±0.30,不同孵育时间(0 、3、6、12、24 h)分别为3.81±0.33、3.75±0.39、3.66±0.33、3.76±0.32、3.62±0.39,不同反复冻融次数(0、2、4、8次)分别为3.75±0.29、3.70±0.32、3.70±0.31、3.56±0.29,不同pH值(4.5、7.0、9.0)分别为3.76±0.28、3.72±0.28、3.65±0.33,不同微量蛋白的浓度(0~20、40~80、120~140 mg/L)分别为3.72±0.30、3.63±0.38、3.70±0.50;经单因素方差分析,同因素不同水平下miRNA-126含量差异均无统计学意义(F值分别为1.840、1.321、2.262、0.941、0.411,P均>0.05)。肾损伤组尿中miRNA-126表达水平(4.55±0.63)显著高于健康对照组(3.75±0.39),且差异有统计学意义(t=6.231,P=0.002);当以miRNA-126的相对水平lg2(50-Ct)>4.19为临界值时,miRNA-126的ROC曲线下面积为0.779,95%可信区间(CI)为0.681~0.877,P<0.001,预测肾损伤的敏感度为61.7%,特异度为88.9%。

结论

miRNA-126在尿中相对稳定,有望成为一项新的临床诊断肾损伤指标。

Objective

To analyze the stability of microRNA-126 (miRNA-126) in human urine and evaluate its possibility in diagnosis of renal injury.

Methods

The influence of incubation time, test temperature, numbers of freeze-thaw cycles, pH value and different albumin concentration on stability of microRNA-126 in the urine was evaluated by one variable Chi-Square analysis. Real-time PCR was used to compare the levels of urinary miRNA-126 between 69 healthy volunteers and 139 patients with renal injury.T test was used to compare the variance of urinary miRNA-126 levels between the healthy and patient groups.ROC curve was used to evaluate the value of urine miRNA-126 in diagnosis of renal injury.

Results

The levels of urinary miRNA-126 were 3.81±0.33, 3.78±0.32, 3.83±0.43, 3.69±0.30 when the samples were incubated at room temperature, 4℃,-20℃, -80℃ for 24 hours respectively. The concentration of urinary miRNA-126 were 3.81±0.33, 3.75±0.39, 3.66±0.33, 3.76±0.32, 3.62±0.39 when the samples were placed at room temperature for 0, 3, 6, 12, 24 h. The levels of urinary miRNA-126 were 3.75±0.29, 3.70±0.32,3.70±0.31, 3.56±0.29 when urinary specimens were subjected to different freeze-thaw cycles(0, 2, 4, 8).The levels of urinary miRNA-126 were 3.76±0.28, 3.72±0.28, 3.65±0.33 when urinary specimens were subjected to different pH values (4.5, 7.0, 9.0). The concentrations of urinary miRNA-126 in groups (0-20,40-80, 120-140 mg/L) containing different urinary albumins (3.72±0.30, 3.63±0.38, 3.70±0.50) showed no significantly change. There were no significant differences in the levels of miRNA-126 (F value of 1.840, 1.321,2.262, 0.941, 0.411, all of P>0.05). The level of urinary miRNA-126 in patients with renal injury (4.55±0.63)was higher than that in healthy volunteers (3.75±0.39, t=6.231, P=0.002). ROC analysis revealed that miRNA-126 had an AUC of 0.779 (95%CI: 0.681-0.877, P<0.001) and sensitivity of 61.7%, specificity of 88.9% when the cut-off value was lg2(50-Ct)>4.19.

Conclusion

These results indicated that miRNA-126 in urine is relatively stable in urine. It has the potential to become a new molecular biomarker for early diagnosis of renal injury.

图1 不同储存温度下尿miR-126相对含量图 注:60名健康人尿标本分别置室温、4、-20、-80℃ 24 h后,各组尿miR-126相对含量差异无统计学意义(F=1.840,P>0.05)
图2 不同储存时间下尿miR-126相对含量图 注:60名健康人尿标本分别置于室温0、3、6、12、24 h,各组尿miR-126相对含量差异无统计学意义(F=1.321,P>0.05)
图3 反复冻融后尿液miR-126相对含量的箱式图 注:60名健康人尿标本置室温、-80℃反复冻融0、2、4、8次后,各组尿miR-126相对含量差异无统计学意义(F=2.262,P>0.05)
图4 不同pH值溶液处理后对尿miR-126相对含量的影响图 注:30名健康人尿标本均分为3份,然后分别用pH值4.5、7.0、9.0的溶液进行处理后,各组尿miR-126相对含量差异无统计学意义(F=0.941,P>0.05)
图5 不同微量蛋白浓度下尿液中miR-126相对含量图 注:30名健康人尿标本均各分为3份,经用微量白蛋白质控品将标本中微量蛋白浓度分别调整为0~20、40~80 、120~140 mg/L进行处理后,各组尿miR-126相对含量差异无统计学意义(F=0.411,P>0.05)
图6 尿miR-126诊断肾损伤的ROC曲线图
1
Bartel DP. MicroRNAs: Target recognition and regulatoryfunctions[J].Cell, 2009, 136: 215-233.
2
Cortez MA, Calin GA. MicroRNA identification in plasma and serum:a new tool to diagnose and monitor diseases[J]. Expert Opin Biol Ther,2009, 9: 703-711.
3
Wittmann J, Jäck HM. Serum microRNAs as powerful cancer biomarkers[J]. Biochim Biophys Acta, 2010, 1806: 200-207.
4
Wang K, Zhang S, Marzolf B, et al. Circulating microRNAs potential biomarkers for drug-induced liver injury[J]. Proc Natl Acad Sci U S A,2009, 106: 4402-4407.
5
Laterza OF, Lim L, Garrett-Engele PW, et al. Plasma microRNAs as sensitive and specific biomarkers of tissue injury[J]. Clin Chem, 2009,55: 1977-1983.
6
Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases[J].Cell Res, 2008, 18: 997-1006.
7
Ji X, Takahashi R, Hiura Y, et al. Plasma miR-208 as a biomarker of myocardial injury[J]. Clin Chem, 2009, 55: 1944-1949.
8
Tijsen AJ, Creemers EE, Moerland PD, et al. MiR423-5p as acirculating biomarker for heart failure[J]. Circ Res, 2010, 106: 1035-1039.
9
Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease[J]. Circulat Res, 2010,107: 677-684.
10
Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci U S A, 2008, 105: 10513-10518.
11
Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids[J]. Clin Chem, 2010, 56: 1733-1741.
12
Tzimagiorgis G, Michailidou EZ, Kritis A, et al. Recovering circulating extracellular or cell-free RNA from bodily fluids[J]. Cancer Epidemiol,2011, 35: 580-589.
13
Cortez MA, Bueso-Ramos C, Ferdin J, et al. MicroRNAs in body fluids--the mix of hormones and biomarkers[J]. Nat Rev Clin Oncol,2011, 8: 467-477.
14
Zhang L, Huang J, Yang N, et a1. microRNAs exhibithigh frequency genomic alterations in human cancer[J]. Proc Natl Acad Sci U S A,2006, 103: 9136-9141.
15
Takamochi K, Ogura T, Suzuki K, et a1. Loss of heterozygosity on chromosomes 9q and 16p in atypical adenomatous hyperplasia concomitant with adenoearcinoma of the lung[J]. Am J Pathol, 2001, 159: 1941-1948.
16
Hanke M, Hoefig K, Merz H, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer[J]. Urol Oncol, 2010, 28: 655-661.
17
Fish JE, Santoro MM, Morton SU, et a1. miR-126 regulates angiogenic signaling and vascular integrity[J]. Dev Cell, 2008, 15: 272-284.
18
Bartel DP. MicroRNAs: target recognition and regulatory functions[J].Cell, 2009, 136: 215- 233.
19
Park NJ, Zhou H, Elashoff D, et al. Salivary microRNA: discovery,characterization, and clinical utility for oral cancer detection[J]. Clin Cancer Res, 2009, 15: 5473-5477.
20
Xie Y, Todd NW, Liu Z, et al. Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer[J]. Lung Cancer, 2010, 67: 170-176.
21
Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis[J].Dev Cell, 2008, 15: 261-271.
22
McDonald JS, Milosevic D, Reddi HV, et al. Analysis of circulating microRNA: preanalytical and analytical challenges[J]. Clin Chem,2011, 57: 833-840.
23
Gregory PA, Bracken CP, Bert AG, et al. MicroRNAs as regulators of epithelial-mesenchymal transition[J]. Cell Cycle, 2008, 20: 3112-3118.
24
Paterson EL, Kolesnikoff N, Gregory PA, et al. The microRNA-200 family regulates epithelial to mesenchymal transition[J]. Scientific World J, 2008, 8: 901-904.
25
Bracken CP, Gregory PA, Kolesnikoff N, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition[J]. Cancer Res, 2008, 68:7846-7854.
26
Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors[J]. Proc Natl Acad Sci U S A , 2007,104: 3432-3437.
27
Harris TA, Yamakuchi M, Ferlito M, et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1[J]. Proc Natl Acad Sci U S A, 2008, 105: 1516-1521.
28
Liu B, Peng XC, Zheng XL, et al. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo[J]. Lung Cancer, 2009, 66: 169-175.
[1] 郭艳波, 马亮, 李刚, 阎伟, 骆帝, 岳亮, 吴伟山. 全膝关节置换术后胫股关节脱位的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 658-671.
[2] 高小康, 张净宇, 刘金伟, 田东牧, 胡永成, 徐卫国. 连接型人工膝关节假体运动和负重模式的演变和进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 505-516.
[3] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[4] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[5] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[6] 白香妮, 孙巨军, 谢鹤, 李宏斌. 急性胰腺炎患者血清微小RNA-142-3p和磷脂酰肌醇3-激酶水平变化及对并发腹腔感染风险预测[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 222-228.
[7] 刘中文, 刘畅, 高洋, 刘东, 林世庆, 杨建华, 赵福义. 尿液microRNA-326与腹腔镜根治性膀胱切除术治疗膀胱癌患者预后的相关性研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 386-391.
[8] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[9] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[10] 袁楠, 黄梦杰, 白云凤, 李晓帆, 罗从娟, 陈健文. 急性肾损伤-慢性肾脏病转化小鼠模型制备的教学要点及学习效果分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 226-230.
[11] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[12] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[13] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[14] 崔秋子, 姚红曼, 艾迎春. 监测NLR、PLR、CAR、白蛋白、血钙及血糖指标水平对急性胰腺炎患者急性肾损伤的预测价值分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 244-248.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要