切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2015, Vol. 03 ›› Issue (03) : 139 -145. doi: 10.3877/cma.j.issn.2095-5820.2015.03.003

所属专题: 文献

综述

新一代测序技术在肿瘤精准医学中的应用
王旭东, 鞠少卿   
  • 收稿日期:2015-08-19 出版日期:2015-08-28
  • 通信作者: 鞠少卿

Application of next generation sequencing in cancer precision medicine

Xudong Wang, Shaoqing Ju   

  • Received:2015-08-19 Published:2015-08-28
  • Corresponding author: Shaoqing Ju
  • About author:
    Corresponding author: Ju Shaoqing, Email:
引用本文:

王旭东, 鞠少卿. 新一代测序技术在肿瘤精准医学中的应用[J]. 中华临床实验室管理电子杂志, 2015, 03(03): 139-145.

Xudong Wang, Shaoqing Ju. Application of next generation sequencing in cancer precision medicine[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2015, 03(03): 139-145.

精准医学依据全基因组测序数据及其他相关分子信息与个人疾病状态资料,可更好地诠释疾病发生的分子机理,进而为开发靶向药物和实现精准用药做准备。目前,精准医学的理念将首先在临床肿瘤诊治中应用,人们可根据导致疾病的潜在分子和相关因子对疾病进行诊断和分类,实现"同病异治"和"异病同治"的临床治疗策略。此外,新一代测序技术也将成为临床肿瘤诊治中的不可或缺的技术;同时,还需进一步完善相应的管理政策,以达到临床应用规范化管理的目的。

In precision medicine. whole genome sequencing data, related molecular information and individual clinical data, are often employed forselecting appropriate and optmal therepiesbased on the contect of a patient′s genetic conten, and then prepare for the development of targeted drugs and achieve accurate medical care. At present, the concept of precision medicine is infiltrating into the fields of clinical tumor diagnosis and treatment. Tumor will be diagnosed and classified according to underlying molecular and related factors to achieve "treating the same disease with different governance" and "treating different diseases with the same protocol". In addition, the next generation sequencing(NGS) technology will be an indispensable technology in precision medicine, which promotes the application of precision medical treatment in the clinical setting. Mereover, it also need to improve the regulatory policies, to achieve the goal of standardized management of NGS in clinical application.

表1 常见肿瘤的相关关键基因突变
表2 与靶向药物相关的分子伴随检测
表3 遗传性基因突变与乳腺癌发生风险关联性[39]
[1]
Collins FS, Varmus H. A new initiative on precision medicine[J]. N Engl J Med, 2015, 372(9):793–795.
[2]
Ashley EA. The precision medicine initiative: a new national effort[J]. JAMA, 2015, 313(21):2119–2120.
[3]
Ong FS, Lin JC, Das K, et al. Translational utility of next-generation sequencing[J]. Genomics, 2013, 102(3):137–139.
[4]
Moorcraft SY, Gonzalez D, Walker BA. Understanding next generation sequencing in oncology: A guide for oncologists[J]. Crit Rev Oncol Hematol, 2015, 96(3):463–474.
[5]
Hinrichs JW, van Blokland WT, Moons MJ, et al. Comparison of next-generation sequencing and mutation-specific platforms in clinical practice[J]. Am J Clin Pathol, 2015, 143(4):573–578.
[6]
Xuan J, Yu Y, Qing T, et al. Next-generation sequencing in the clinic: promises and challenges[J]. Cancer Lett, 2013, 340(2):284–295.
[7]
Jessri M, Farah CS. Next generation sequencing and its application in deciphering head and neck cancer[J]. Oral Oncol, 2014, 50(4):247–253.
[8]
Tattini L, D’Aurizio R, Magi A. Detection of genomic structural variants from next-generation sequencing data[J]. Front Bioeng Biotechnol, 2015, 3:92.
[9]
Nakagawa H, Wardell CP, Furuta M, et al. Cancer whole-genome sequencing: present and future[J]. Oncogene, 2015.[Epub ahead of print]
[10]
Samorodnitsky E, Jewell BM, Hagopian R, et al. Evaluation of hybridization capture versus amplicon-based methods for whole-exome sequencing[J]. Hum Mutat, 2015, 36(9):903–914.
[11]
Lin X, Tang W, Ahmad S, et al. Applications of targeted gene capture and next-generation sequencing technologies in studies of human deafness and other genetic disabilities[J]. Hear Res, 2012, 288(1–2):67–76.
[12]
Stranneheim H, Wedell A. Exome and genome sequencing: a revolution for the discovery and diagnosis of monogenic disorders[J]. J Intern Med, 2015.[Epub ahead of print]
[13]
Scheffler M, Schultheis A, Teixido C, et al. Ros1 rearrangements in lung adenocarcinoma: Prognostic impact, therapeutic options and genetic variability[J]. Oncotarget, 2015, 6(12):10577–10585.
[14]
Coco S, Truini A, Vanni I, et al. Next generation sequencing in non-small cell lung cancer: new avenues toward the personalized medicine[J]. Curr Drug Targets, 2015, 16(1):47–59.
[15]
Nielsen MM, Tehler D, Vang S, et al. Identification of expressed and conserved human noncoding RNAs[J]. RNA, 2014, 20(2):236–251.
[16]
Yang KC, Yamada KA, Patel AY, et al. Deep rna sequencing reveals dynamic regulation of myocardial noncoding rnas in failing human heart and remodeling with mechanical circulatory support[J]. Circulation, 2014, 129(9):1009–1021.
[17]
Martens-Uzunova ES, Jalava SE, Dits NF, et al. Diagnostic and prognostic signatures from the small non-coding rna transcriptome in prostate cancer[J]. Oncogene, 2012, 31(8):978–991.
[18]
Hagemann IS, Devarakonda S, Lockwood CM, et al. Clinical next-generation sequencing in patients with non-small cell lung cancer[J]. Cancer, 2015, 121(4):631–639.
[19]
Shen T, Pajaro-Van de Stadt SH, Yeat NC, et al. Clinical applications of next generation sequencing in cancer: From panels, to exomes, to genomes[J]. Front Genet, 2015, 6:215.
[20]
Shih J, Bashir B, Gustafson KS, et al. Cancer Signature Investigation: ERBB2 (HER2)- Activating Mutation and Amplification-Positive Breast Carcinoma Mimicking Lung Primary[J]. J Natl Compr Canc Netw, 2015, 13(8):947–952.
[21]
Gusnanto A, Tcherveniakov P, Shuweihdi F, et al. Stratifying tumour subtypes based on copy number alteration profiles using next-generation sequence data[J]. Bioinformatics, 2015, 31(16):2713–2720.
[22]
Fenizia F, De Luca A, Pasquale R, et al. Egfr mutations in lung cancer: From tissue testing to liquid biopsy[J]. Future Oncol, 2015, 11(11):1611–1623.
[23]
Yong E. Cancer biomarkers: Written in blood[J]. Nature, 2014, 511(7511):524–526.
[24]
Lebofsky R, Decraene C, Bernard V, et al. Circulating tumor DNA as a non-invasive substitute to metastasis biopsy for tumor genotyping and personalized medicine in a prospective trial across all tumor types[J]. Mol Oncol, 2015, 9(4):783–790.
[25]
Frenel JS, Carreira S, Goodall J, et al. Serial next generation sequencing of circulating cell free DNA evaluating tumour clone response to molecularly targeted drug administration[J]. Clin Cancer Res, 2015. [Epub ahead of print]
[26]
Dawson SJ, Tsui DW, Murtaza M, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer[J]. N Engl J Med, 2013, 368(13):1199–1209.
[27]
O’Brien CP, Taylor SE, O’Leary JJ, et al. Molecular testing in oncology: Problems, pitfalls and progress[J]. Lung Cancer, 2014, 83(3):309–315.
[28]
Sima J, Gilbert DM. Complex correlations: replication timing and mutational landscapes during cancer and genome evolution[J]. Curr Opinion Genet Dev, 2014, 25:93–100.
[29]
Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes[J]. Science, 2013, 339(6127):1546–1558.
[30]
Lipson D, Capelletti M, Yelensky R, et al. Identification of new alk and ret gene fusions from colorectal and lung cancer biopsies[J]. Nat Med, 2012, 18(3):382–384.
[31]
Janne PA, Yang JC, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer[J]. N Engl J Med, 2015, 372(18):1689–1699.
[32]
Jiang T, Zhou C. Clinical activity of the mutant-selective EGFR inhibitor AZD9291 in patients with EGFR inhibitor-resistant non-small cell lung cancer[J]. Translat Lung Cancer Res, 2014, 3(6):370–372.
[33]
Drilon A, Wang L, Arcila ME, et al. Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in lung adenocarcinomas otherwise negative for such alterations by other genomic testing approaches[J]. Clin Cancer Res, 2015, 21(16):3631–3639.
[34]
Azijli K, Stelloo E, Peters GJ, et al. New developments in the treatment of metastatic melanoma: Immune checkpoint inhibitors and targeted therapies[J]. Anticancer Res, 2014, 34(4):1493–1505.
[35]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer, 2012, 12(4):252–264.
[36]
Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J]. Science, 2015, 348(6230):124–128.
[37]
Judkins T, Leclair B, Bowles K, et al. Development and analytical validation of a 25-gene next generation sequencing panel that includes the BRCA1 and BRCA2 genes to assess hereditary cancer risk[J]. BMC Cancer, 2015, 15:215.
[38]
Meng H, Cao Y, Qin J, et al. DNA methylation, its mediators and genome integrity[J]. Int J Biol Sci, 2015, 11(5):604–617.
[39]
Pilgrim SM, Pain SJ, Tischkowitz MD. Opportunities and challenges of next-generation DNA sequencing for breast units[J]. Br J Surg, 2014, 101(8):889–898.
[40]
Bennett NC, Farah CS. Next-generation sequencing in clinical oncology: next steps towards clinical validation[J]. Cancers (Basel), 2014, 6(4):2296–2312.
[1] 汪洪斌, 张红霞, 何文, 杜丽娟, 程令刚, 张雨康, 张萌. 低级别阑尾黏液性肿瘤与阑尾黏液腺癌超声及超声造影特征分析[J]. 中华医学超声杂志(电子版), 2024, 21(09): 865-871.
[2] 赖全友, 高远, 汪建林, 屈士斌, 魏丹, 彭伟. 三维重建技术结合腹腔镜精准肝切除术对肝癌患者术后CD4+、CD8+及免疫球蛋白水平的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 651-654.
[3] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[4] 顾雯, 凌守鑫, 唐海利, 甘雪梅. 两种不同手术入路在甲状腺乳头状癌患者开放性根治性术中的应用比较[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 687-690.
[5] 贺斌, 马晋峰. 胃癌脾门淋巴结转移危险因素[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 694-699.
[6] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[7] 庄宝雄, 邓海军. 单孔+1腹腔镜直肠癌侧方淋巴结清扫术[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 601-601.
[8] 郑民华, 蒋天宇, 赵轩, 马君俊. 中国腹腔镜直肠癌根治术30年发展历程与未来[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 591-595.
[9] 池畔, 黄胜辉. 中国腹腔镜直肠癌根治术30年来的巨大进步[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 596-600.
[10] 李明, 屠松, 闫鹏, 钱军, 高鹏程, 许文山, 杨发英, 胡振涛, 单永玮. 应用前列腺电切镜引导置管治疗直肠低位吻合口漏研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 603-606.
[11] 李玲, 刘亚, 李培玲, 张秀敏, 李萍. 直肠癌患者术后肠道菌群的变化与抑郁症相关性研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 607-610.
[12] 赵梓竣, 兰运升. 改良一针法末端回肠造口术对低位直肠癌保肛术后应激反应及安全性的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 611-614.
[13] 吴胜伟, 王志伟, 陈贵进, 刘序, 吴晓翔. 系膜肥厚低位直肠癌患者改良NOSES Ⅰ式手术的临床效果评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 615-618.
[14] 郭曌蓉, 王歆光, 刘毅强, 何英剑, 王立泽, 杨飏, 汪星, 曹威, 谷重山, 范铁, 李金锋, 范照青. 不同亚型乳腺叶状肿瘤的临床病理特征及预后危险因素分析[J]. 中华临床医师杂志(电子版), 2024, 18(06): 524-532.
[15] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
阅读次数
全文


摘要