切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2015, Vol. 03 ›› Issue (03) : 146 -152. doi: 10.3877/cma.j.issn.2095-5820.2015.03.004

所属专题: 文献

综述

血管内皮生长因子在肿瘤血管形成中的作用及其靶向治疗研究进展
王鲁, 常艳丽, 张青云   
  • 收稿日期:2015-06-10 出版日期:2015-08-28
  • 通信作者: 张青云

Roles of vascular endothelial growth factor in the angiopoiesis and its targeted therapy

Lu Wang, Yanli Chang, Qingyun Zhang   

  • Received:2015-06-10 Published:2015-08-28
  • Corresponding author: Qingyun Zhang
  • About author:
    Corresponding author: Zhang Qingyun, Email:
引用本文:

王鲁, 常艳丽, 张青云. 血管内皮生长因子在肿瘤血管形成中的作用及其靶向治疗研究进展[J]. 中华临床实验室管理电子杂志, 2015, 03(03): 146-152.

Lu Wang, Yanli Chang, Qingyun Zhang. Roles of vascular endothelial growth factor in the angiopoiesis and its targeted therapy[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2015, 03(03): 146-152.

肿瘤发展依赖于组织周围新生血管的形成。在众多促进血管生成的内源性因子中,血管内皮生长因子(vascular endothelial growth factor,VEGF)发挥了关键性作用,因此,以VEGF为靶点进行抗肿瘤血管生成成为抗癌治疗的重要策略。截至目前,大量靶向VEGF信号转导系统的抗血管生成药物已应用于临床或处于临床试验阶段,包括VEGF单克隆抗体、VEGF受体激酶抑制剂及作用于其下游信号通路的小分子抑制剂等。本文针对VEGF的信号转导系统及其靶向治疗现状予以综述,并简要阐述抗肿瘤血管生成治疗过程中耐药现象的产生机制。

Progression of tumor depends on angiogenesis in a malignant tissue. Among the numerous endogenous promoters of angiogenesis, vascular endothelial growth factor(VEGF) plays a leading role. VEGF targeted angiogenesis therapy has the remarkable anticancer strategy. So far, there have been many antiangiogenic agents applied in clinic or in clinic trials, including anti VEGF monoclonal antibodies, VEGF receptor kinase inhibitors and small molecular inhibitors targeting on the downstream signal pathways. This review will interpret the VEGF signal system and the status of its targeted treatment. In addition, the mechanism of tumor resistance to antiangiogenic therapy will bee laborated briefly.

图1 VEGF信号传导通路及主要调节机制
表1 抗血管生成的靶向单克隆抗体[20]
[1]
Kerbel RS. Tumor angiogenesis: past, present and the near future[J].Carcinogenesis, 2000, 21(3):505–515.
[2]
Folkman J. Tumor angiogenesis: therapeutic implications[J]. N Engl J Med, 1971, 285(21):1182–1186.
[3]
Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy[J]. Oncologist, 2004, 9 suppl 1:2–10.
[4]
Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors[J]. J Cell Sci, 2001, 114(5):853 –865.
[5]
Roy H, Bhardwaj S, Ylä-Herttuala S. Biology of vascular endothelial growth factors[J]. FEBS Lett, 2006, 580(12):2879–2887.
[6]
Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secretedangiogenic mitogen[J]. Science, 1989, 246(4935):1306–1309.
[7]
Pajusola K, Aprelikova O, Korhonen J, et al. FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines[J]. Cancer Res, 1992, 52(20):5738–5743.
[8]
Holmes K, Roberts OL, Thomas AM, et al. Vascular endothelial growth factor receptor-2: structure, function, intracellular signaling and therapeutic inhibition[J]. Cell Signal, 2007, 19(10):2003–2012.
[9]
Chu E. An update on the current and emerging targeted agents in metastatic colorectal cancer[J]. Clin Colorectal Cancer, 2011, 11(1):1–13.
[10]
Krauss G. Biochemistry of signal transduction and regulation[M]. 3rd ed. WILEY-VCH Verlag:Weinheim, 2003.
[11]
Simó R, Sundstrom JM, Antonetti DA. Ocular anti-VEGF therapy for diabetic retinopathy: the role of VEGF in the pathogenesis of diabetic retinopathy[J]. Diabetes Care, 2014, 37(4):893–899.
[12]
Takahashi T, Yamaguchi S, Chida K, et al. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-Adependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells[J]. EMBO J, 2001, 20(11):2768–2778.
[13]
Lee SL, Rouhi P, Dahl JL, et al. Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model[J]. Proc Natl Acad Sci U S A, 2009, 106(46):19485–19490.
[14]
Liu W, Xu J, Wang M, et al. Tumor-derived vascular endothelial growth factor (VEGF)-a facilitates tumor metastasis through the VEGF-VEGFR1 signaling pathway[J]. Int J Oncol, 2011, 39(5):1213–1220.
[15]
Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis[J]. J Clin Oncol, 2005, 23(5):1011–1027.
[16]
Rosen LS. Clinical experience with angiogenesis signaling inhibitors: focus on vascular endothelial growth factor (VEGF) blockers[J]. Cancer Control, 2002, 9(2 suppl):36–44.
[17]
Schmidt NO, Westphal M, Hagel C, et al. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis[J]. Int J Cancer, 1999, 84(1):10–18.
[18]
Pegram MD, Reese DM. Combined biological therapy of breast cancer using monoclonal antibodies directed against HER2/neu protein and vascular endothelial growth factor[J]. Semin Oncol, 2002, 29(32 suppl 11):29–37.
[19]
Miao HQ, Hu K, Jimenez X, et al. Potent neutralization of VEGF biological activities with a fully human antibody Fab fragment directed against VEGF receptor 2[J]. Biochem Biophys Res Commun, 2006, 345(1):438–445.
[20]
Liang X, Xu F, Li X, et al. VEGF signal system: the application of antiangiogenesis[J]. Curr Med Chemy, 2014, 21(7):894–910.
[21]
Wang M, Zheng X, Ruan X, et al. Efficacy and safety of first-line chemotherapy plus bevacizumab in patients with metastatic colorectal cancer: a meta-analysis[J]. Chin Med J (Engl), 2014, 127(3):538–546.
[22]
罗聪, 应杰儿. 贝伐单抗在结直肠癌靶向治疗中的研究进展[J]. 中国全科医学, 2011, 14(29):3407–3409.
[23]
Du J, Lei B, Qin J, et al. Molecular modeling studies of vascular endothelial growth factor receptor tyrosine kinase inhibitors using QSAR and docking[J]. J Mol Graph Model, 2009, 27(5):642–654.
[24]
Minguet J, Smith KH, Bramlage CP, et al. Targeted therapies for treatment of renal cell carcinoma: recent advances and future perspectives[J]. Cancer Chemother Pharmacol, 2015, [Epub ahead of print].
[25]
Dreyer C, Sablin MP, Bouattour M, et al. Disease control with sunitinib in advanced intrahepatic cholangiocarcinoma resistant to gemcitabine-oxaliplatin chemotherapy[J]. World J Hepatol, 2015, 7(6):910–915.
[26]
Choi KJ, Baik IH, Ye SK, et al. Molecular Targeted Therapy for Hepatocellular Carcinoma: Present Status and Future Directions[J]. Biol Pharm Bull, 2015, 38(7):986–991.
[27]
Johnson PJ, Qin SK, Park JW, et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma:Results from the randomized phase III BRISK-FL study[J]. J Clin Oncol, 2013, 31(28):3517–24.
[28]
Lai L, Liu J, Zhai D, et al. Plumbagin inhibits tumour angiogenesis and tumour growth through the rassignalling pathway following activation of the VEGF receptor-2[J]. Br J Pharmacol, 2012, 165(4b):1084–1096.
[29]
Gibney GT, Gauthier G, Ayas C, et al. Treatment patterns and outcomes in BRAF V600E-mutant melanoma patients with brain metastases receiving vemurafenib in the real-world setting[J]. Cancer Med, 2015,[Epub ahead of print].
[30]
Chelouche-Lev D, Miller CP, Tellez C, et al. Different signalling pathways regulate VEGF and IL-8 expression in breast cancer: implications for therapy[J]. Eur J Cancer, 2004, 40(16):2509–2518.
[31]
Dry JR, Pavey S, Pratilas CA, et al. Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244)[J]. Cancer Res, 2010, 70(6):2264–2273.
[32]
American Society of Clinical Oncology (ASCO). 2012 ASCO Annual Meeting: METRIC phase III study: Efficacy of trametinib (T), a potent and selective MEK inhibitor (MEKi), in progressionfreesurvival (PFS) and overall survival (OS), compared with chemotherapy (C) in patients (pts) with BRAFV600E/K mutant advanced or metastatic melanoma (MM). Accessed 2012].

URL    
[33]
Rizos H, Menzies AM, Pupo GM, et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact[J]. Clin Cancer Res, 2014, 20(7):1965–1977.
[34]
Larkin J, Ascierto PA, Dréno B, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma[J]. N Engl J Med, 2014, 371(20):1867–1876.
[35]
Long GV, Stroyakovskiy D, Gogas H, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma[J]. N Engl J Med, 2014, 371(20):1877–1888.
[36]
Robert C, Karaszewska B, Schachter J, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib[J]. N Engl J Med, 2015, 372(1):30–39.
[37]
Song Y, Dai F, Zhai D, et al. Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways[J]. Angiogenesis, 2012, 15(3):421–432.
[38]
Liu LZ, Li C, Chen Q, et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression[J]. PLoS One, 2011, 6(4):e19139.
[39]
Li C, Xin P, Xiao H, et al. The dual PI3K/mTOR inhibitor NVP-BEZ235 inhibits proliferation and induces apoptosis of burkitt lymphoma cells[J]. Cancer Cell Int, 2015, 15:65.
[40]
Agarwal E, Chaudhuri A, Leiphrakpam PD, et al. Akt inhibitor MK-2206 promotes anti-tumor activity and cell death by modulation of AIF and Ezrin in colorectal cancer[J]. BMC Cancer, 2014, 14:145.
[41]
Banumathi E, O’Connor A, Gurunathan S, et al. VEGF-induced retinal angiogenic signaling is critically dependent on Ca2+ signaling by Ca2+/calmodulin-dependent protein kinase II[J]. Invest Ophthalmol Vis Sci, 2011, 52(6):3103–3111.
[42]
Pieramici D, Rabena M. Anti-VEGF therapy: comparison of current and future agents[J]. Eye (Lond), 2008, 22(10):1330–1336.
[43]
Sitohy B, Nagy JA, Dvorak HF. Anti-VEGF/VEGFR therapy for cancer: reassessing the target[J]. Cancer Res, 2012, 72(8):1909–1914.
[44]
BD. Advanced Information: RNA interference. Nobel Media AB: nobelprize.org [website on Internet].Available from: Accessed 8 November 2012].

URL    
[45]
Chen S, Feng J, Ma L, et al. RNA interference technology for anti-VEGF treatment[J]. Expert Opin Drug Deliv, 2014, 11(9):1471–1480.
[46]
Chekhonin VP, Shein SA, Korchagina AA, et al. VEGF in tumor progression and targeted therapy[J]. Curr Cancer Drug Targets, 2013, 13(4):423–443.
[47]
Batchelor TT, Sorensen AG, di Tomaso E, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients[J]. Cancer Cell, 2007, 11(1):83–95.
[48]
Fan F, Samuel S, Gaur P, et al. Chronic exposure of colorectal cancer cells to bevacizumab promotes compensatory pathways that mediate tumour cell migration[J]. Br J Cancer, 2011, 104(8):1270–1277.
[49]
Du R, Lu KV, Petritsch C, et al. HIF1 alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion[J]. Cancer Cell, 2008, 13(3):206–220.
[50]
Hu YL, DeLay M, Jahangiri A, et al. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma[J]. Cancer Res, 2012, 72(7):1773–1783.
[51]
Pàez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis[J]. Cancer Cell, 2009, 15(3):220–231.
[52]
Ebos JM, Lee CR, Cruz-Munoz W, et al. Accelerated metastasis after shortterm treatment with a potent inhibitor of tumor angiogenesis[J]. Cancer Cell, 2009, 15(3):232–239.
[53]
Sakariassen PØ, Prestegarden L, Wang J, et al. Angiogenesis-independent tumor growth mediated by stem-likecancer cells[J]. Proc Natl Acad Sci U S A, 2006, 103(44):16466–16471.
[54]
Kondo Y, Kanzawa T, Sawaya R, et al. The role of autophagy in cancer development and response to therapy[J]. Nat Rev Cancer, 2005, 5(9):726–734.
[55]
Hu YL, Jahangiri A, Delay M, et al. Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenictherapy[J]. Cancer Res, 2012, 72(17):4294–4299.
[56]
Wu X, Northcott PA, Dubuc A, et al. Clonal selection drives genetic divergence of metastatic medulloblastoma[J]. Nature, 2012, 482(7386):529–533.
[1] 马敏榕, 李聪, 周勤. 宫颈癌治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 497-504.
[2] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[3] 王璐, 樊杨. 子宫内膜癌相关生物标志物研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 511-516.
[4] 闫甲, 刘双池, 王政宇. 胆囊癌肿瘤标志物的研究和应用进展[J]. 中华普通外科学文献(电子版), 2023, 17(05): 391-394.
[5] 王博, 白子锐, 李坚. 近红外二区新型血管内皮生长因子受体靶向探针在结直肠癌小鼠模型中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(03): 173-177.
[6] 徐瑜杰, 赵国栋. 晚期胃癌治疗方法的研究进展和挑战[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 451-455.
[7] 南方护骨联盟前列腺癌骨转移专家组. 前列腺癌骨转移诊疗专家共识(2023版)[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 201-208.
[8] 王昆, 潘迪, 王庆, 江克华, 孙发. 机器人手术治疗膀胱副神经节瘤一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 291-292.
[9] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[10] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[11] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[12] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[13] 吴寅, 陈智琴, 高勇, 权明. Her-2阳性结直肠癌的诊治进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 420-425.
[14] 吴晓翔, 杨波, 李景漩, 张凤玲, 郭桂辉, 郑少培. 脐动脉超声检查联合NLR、sFlt-1/PLGF对妊娠高血压综合征患者不良妊娠结局的预测价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 266-271.
[15] 颜凡辉, 赵明俐, 李颖, 郭方明, 詹景冬, 赵英杰, 王阳, 张艳芬, 赵笑梅. 急性冠脉综合征患者冠脉血管病变程度与血清TNF-α、VEGF水平相关性研究[J]. 中华诊断学电子杂志, 2023, 11(03): 158-164.
阅读次数
全文


摘要