切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2015, Vol. 03 ›› Issue (03) : 146 -152. doi: 10.3877/cma.j.issn.2095-5820.2015.03.004

所属专题: 文献

综述

血管内皮生长因子在肿瘤血管形成中的作用及其靶向治疗研究进展
王鲁, 常艳丽, 张青云   
  • 收稿日期:2015-06-10 出版日期:2015-08-28
  • 通信作者: 张青云

Roles of vascular endothelial growth factor in the angiopoiesis and its targeted therapy

Lu Wang, Yanli Chang, Qingyun Zhang   

  • Received:2015-06-10 Published:2015-08-28
  • Corresponding author: Qingyun Zhang
  • About author:
    Corresponding author: Zhang Qingyun, Email:
引用本文:

王鲁, 常艳丽, 张青云. 血管内皮生长因子在肿瘤血管形成中的作用及其靶向治疗研究进展[J]. 中华临床实验室管理电子杂志, 2015, 03(03): 146-152.

Lu Wang, Yanli Chang, Qingyun Zhang. Roles of vascular endothelial growth factor in the angiopoiesis and its targeted therapy[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2015, 03(03): 146-152.

肿瘤发展依赖于组织周围新生血管的形成。在众多促进血管生成的内源性因子中,血管内皮生长因子(vascular endothelial growth factor,VEGF)发挥了关键性作用,因此,以VEGF为靶点进行抗肿瘤血管生成成为抗癌治疗的重要策略。截至目前,大量靶向VEGF信号转导系统的抗血管生成药物已应用于临床或处于临床试验阶段,包括VEGF单克隆抗体、VEGF受体激酶抑制剂及作用于其下游信号通路的小分子抑制剂等。本文针对VEGF的信号转导系统及其靶向治疗现状予以综述,并简要阐述抗肿瘤血管生成治疗过程中耐药现象的产生机制。

Progression of tumor depends on angiogenesis in a malignant tissue. Among the numerous endogenous promoters of angiogenesis, vascular endothelial growth factor(VEGF) plays a leading role. VEGF targeted angiogenesis therapy has the remarkable anticancer strategy. So far, there have been many antiangiogenic agents applied in clinic or in clinic trials, including anti VEGF monoclonal antibodies, VEGF receptor kinase inhibitors and small molecular inhibitors targeting on the downstream signal pathways. This review will interpret the VEGF signal system and the status of its targeted treatment. In addition, the mechanism of tumor resistance to antiangiogenic therapy will bee laborated briefly.

图1 VEGF信号传导通路及主要调节机制
表1 抗血管生成的靶向单克隆抗体[20]
[1]
Kerbel RS. Tumor angiogenesis: past, present and the near future[J].Carcinogenesis, 2000, 21(3):505–515.
[2]
Folkman J. Tumor angiogenesis: therapeutic implications[J]. N Engl J Med, 1971, 285(21):1182–1186.
[3]
Ferrara N. Vascular endothelial growth factor as a target for anticancer therapy[J]. Oncologist, 2004, 9 suppl 1:2–10.
[4]
Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors[J]. J Cell Sci, 2001, 114(5):853 –865.
[5]
Roy H, Bhardwaj S, Ylä-Herttuala S. Biology of vascular endothelial growth factors[J]. FEBS Lett, 2006, 580(12):2879–2887.
[6]
Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secretedangiogenic mitogen[J]. Science, 1989, 246(4935):1306–1309.
[7]
Pajusola K, Aprelikova O, Korhonen J, et al. FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines[J]. Cancer Res, 1992, 52(20):5738–5743.
[8]
Holmes K, Roberts OL, Thomas AM, et al. Vascular endothelial growth factor receptor-2: structure, function, intracellular signaling and therapeutic inhibition[J]. Cell Signal, 2007, 19(10):2003–2012.
[9]
Chu E. An update on the current and emerging targeted agents in metastatic colorectal cancer[J]. Clin Colorectal Cancer, 2011, 11(1):1–13.
[10]
Krauss G. Biochemistry of signal transduction and regulation[M]. 3rd ed. WILEY-VCH Verlag:Weinheim, 2003.
[11]
Simó R, Sundstrom JM, Antonetti DA. Ocular anti-VEGF therapy for diabetic retinopathy: the role of VEGF in the pathogenesis of diabetic retinopathy[J]. Diabetes Care, 2014, 37(4):893–899.
[12]
Takahashi T, Yamaguchi S, Chida K, et al. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-Adependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells[J]. EMBO J, 2001, 20(11):2768–2778.
[13]
Lee SL, Rouhi P, Dahl JL, et al. Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model[J]. Proc Natl Acad Sci U S A, 2009, 106(46):19485–19490.
[14]
Liu W, Xu J, Wang M, et al. Tumor-derived vascular endothelial growth factor (VEGF)-a facilitates tumor metastasis through the VEGF-VEGFR1 signaling pathway[J]. Int J Oncol, 2011, 39(5):1213–1220.
[15]
Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis[J]. J Clin Oncol, 2005, 23(5):1011–1027.
[16]
Rosen LS. Clinical experience with angiogenesis signaling inhibitors: focus on vascular endothelial growth factor (VEGF) blockers[J]. Cancer Control, 2002, 9(2 suppl):36–44.
[17]
Schmidt NO, Westphal M, Hagel C, et al. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis[J]. Int J Cancer, 1999, 84(1):10–18.
[18]
Pegram MD, Reese DM. Combined biological therapy of breast cancer using monoclonal antibodies directed against HER2/neu protein and vascular endothelial growth factor[J]. Semin Oncol, 2002, 29(32 suppl 11):29–37.
[19]
Miao HQ, Hu K, Jimenez X, et al. Potent neutralization of VEGF biological activities with a fully human antibody Fab fragment directed against VEGF receptor 2[J]. Biochem Biophys Res Commun, 2006, 345(1):438–445.
[20]
Liang X, Xu F, Li X, et al. VEGF signal system: the application of antiangiogenesis[J]. Curr Med Chemy, 2014, 21(7):894–910.
[21]
Wang M, Zheng X, Ruan X, et al. Efficacy and safety of first-line chemotherapy plus bevacizumab in patients with metastatic colorectal cancer: a meta-analysis[J]. Chin Med J (Engl), 2014, 127(3):538–546.
[22]
罗聪, 应杰儿. 贝伐单抗在结直肠癌靶向治疗中的研究进展[J]. 中国全科医学, 2011, 14(29):3407–3409.
[23]
Du J, Lei B, Qin J, et al. Molecular modeling studies of vascular endothelial growth factor receptor tyrosine kinase inhibitors using QSAR and docking[J]. J Mol Graph Model, 2009, 27(5):642–654.
[24]
Minguet J, Smith KH, Bramlage CP, et al. Targeted therapies for treatment of renal cell carcinoma: recent advances and future perspectives[J]. Cancer Chemother Pharmacol, 2015, [Epub ahead of print].
[25]
Dreyer C, Sablin MP, Bouattour M, et al. Disease control with sunitinib in advanced intrahepatic cholangiocarcinoma resistant to gemcitabine-oxaliplatin chemotherapy[J]. World J Hepatol, 2015, 7(6):910–915.
[26]
Choi KJ, Baik IH, Ye SK, et al. Molecular Targeted Therapy for Hepatocellular Carcinoma: Present Status and Future Directions[J]. Biol Pharm Bull, 2015, 38(7):986–991.
[27]
Johnson PJ, Qin SK, Park JW, et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma:Results from the randomized phase III BRISK-FL study[J]. J Clin Oncol, 2013, 31(28):3517–24.
[28]
Lai L, Liu J, Zhai D, et al. Plumbagin inhibits tumour angiogenesis and tumour growth through the rassignalling pathway following activation of the VEGF receptor-2[J]. Br J Pharmacol, 2012, 165(4b):1084–1096.
[29]
Gibney GT, Gauthier G, Ayas C, et al. Treatment patterns and outcomes in BRAF V600E-mutant melanoma patients with brain metastases receiving vemurafenib in the real-world setting[J]. Cancer Med, 2015,[Epub ahead of print].
[30]
Chelouche-Lev D, Miller CP, Tellez C, et al. Different signalling pathways regulate VEGF and IL-8 expression in breast cancer: implications for therapy[J]. Eur J Cancer, 2004, 40(16):2509–2518.
[31]
Dry JR, Pavey S, Pratilas CA, et al. Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244)[J]. Cancer Res, 2010, 70(6):2264–2273.
[32]
American Society of Clinical Oncology (ASCO). 2012 ASCO Annual Meeting: METRIC phase III study: Efficacy of trametinib (T), a potent and selective MEK inhibitor (MEKi), in progressionfreesurvival (PFS) and overall survival (OS), compared with chemotherapy (C) in patients (pts) with BRAFV600E/K mutant advanced or metastatic melanoma (MM). Accessed 2012].

URL    
[33]
Rizos H, Menzies AM, Pupo GM, et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact[J]. Clin Cancer Res, 2014, 20(7):1965–1977.
[34]
Larkin J, Ascierto PA, Dréno B, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma[J]. N Engl J Med, 2014, 371(20):1867–1876.
[35]
Long GV, Stroyakovskiy D, Gogas H, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma[J]. N Engl J Med, 2014, 371(20):1877–1888.
[36]
Robert C, Karaszewska B, Schachter J, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib[J]. N Engl J Med, 2015, 372(1):30–39.
[37]
Song Y, Dai F, Zhai D, et al. Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways[J]. Angiogenesis, 2012, 15(3):421–432.
[38]
Liu LZ, Li C, Chen Q, et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression[J]. PLoS One, 2011, 6(4):e19139.
[39]
Li C, Xin P, Xiao H, et al. The dual PI3K/mTOR inhibitor NVP-BEZ235 inhibits proliferation and induces apoptosis of burkitt lymphoma cells[J]. Cancer Cell Int, 2015, 15:65.
[40]
Agarwal E, Chaudhuri A, Leiphrakpam PD, et al. Akt inhibitor MK-2206 promotes anti-tumor activity and cell death by modulation of AIF and Ezrin in colorectal cancer[J]. BMC Cancer, 2014, 14:145.
[41]
Banumathi E, O’Connor A, Gurunathan S, et al. VEGF-induced retinal angiogenic signaling is critically dependent on Ca2+ signaling by Ca2+/calmodulin-dependent protein kinase II[J]. Invest Ophthalmol Vis Sci, 2011, 52(6):3103–3111.
[42]
Pieramici D, Rabena M. Anti-VEGF therapy: comparison of current and future agents[J]. Eye (Lond), 2008, 22(10):1330–1336.
[43]
Sitohy B, Nagy JA, Dvorak HF. Anti-VEGF/VEGFR therapy for cancer: reassessing the target[J]. Cancer Res, 2012, 72(8):1909–1914.
[44]
BD. Advanced Information: RNA interference. Nobel Media AB: nobelprize.org [website on Internet].Available from: Accessed 8 November 2012].

URL    
[45]
Chen S, Feng J, Ma L, et al. RNA interference technology for anti-VEGF treatment[J]. Expert Opin Drug Deliv, 2014, 11(9):1471–1480.
[46]
Chekhonin VP, Shein SA, Korchagina AA, et al. VEGF in tumor progression and targeted therapy[J]. Curr Cancer Drug Targets, 2013, 13(4):423–443.
[47]
Batchelor TT, Sorensen AG, di Tomaso E, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients[J]. Cancer Cell, 2007, 11(1):83–95.
[48]
Fan F, Samuel S, Gaur P, et al. Chronic exposure of colorectal cancer cells to bevacizumab promotes compensatory pathways that mediate tumour cell migration[J]. Br J Cancer, 2011, 104(8):1270–1277.
[49]
Du R, Lu KV, Petritsch C, et al. HIF1 alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion[J]. Cancer Cell, 2008, 13(3):206–220.
[50]
Hu YL, DeLay M, Jahangiri A, et al. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma[J]. Cancer Res, 2012, 72(7):1773–1783.
[51]
Pàez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis[J]. Cancer Cell, 2009, 15(3):220–231.
[52]
Ebos JM, Lee CR, Cruz-Munoz W, et al. Accelerated metastasis after shortterm treatment with a potent inhibitor of tumor angiogenesis[J]. Cancer Cell, 2009, 15(3):232–239.
[53]
Sakariassen PØ, Prestegarden L, Wang J, et al. Angiogenesis-independent tumor growth mediated by stem-likecancer cells[J]. Proc Natl Acad Sci U S A, 2006, 103(44):16466–16471.
[54]
Kondo Y, Kanzawa T, Sawaya R, et al. The role of autophagy in cancer development and response to therapy[J]. Nat Rev Cancer, 2005, 5(9):726–734.
[55]
Hu YL, Jahangiri A, Delay M, et al. Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenictherapy[J]. Cancer Res, 2012, 72(17):4294–4299.
[56]
Wu X, Northcott PA, Dubuc A, et al. Clonal selection drives genetic divergence of metastatic medulloblastoma[J]. Nature, 2012, 482(7386):529–533.
[1] 刘世佳, 陶新楠, 史晋宇, 吕文豪, 张亚芬. 乳酸脱氢酶A在乳腺癌中的作用[J]. 中华乳腺病杂志(电子版), 2024, 18(03): 175-179.
[2] 邵小丽, 林燕, 张玲玲, 韩亚琴. 超声引导下子宫肌瘤注射聚桂醇硬化术联合术后米非司酮治疗临床疗效分析[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 353-360.
[3] 刘清, 汪志凌. 肠道真菌与儿童炎症性肠病[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 172-178.
[4] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[5] 吴伟宙, 王琼仁, 詹雄宇, 郑明星, 李亚县. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——左肾肉瘤样癌[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 525-529.
[6] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[7] 李飞, 郑灶松, 吴芃, 谭万龙. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——延胡索酸水合酶缺陷型晚期肾细胞癌[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 410-414.
[8] 黄兴, 王蕾, 夏丹. 靶向免疫治疗时代下减瘤性肾切除术在转移性肾细胞癌治疗中的价值[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 208-213.
[9] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[10] 陈荣, 钟鑫, 谭平, 张朋. 以阵发性腰痛、血尿、高血压为表现的右肾转移性副神经节瘤一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 172-174.
[11] 魏妙艳, 徐近. 合并远处转移胰腺癌系统性治疗的梳理和展望[J]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 644-650.
[12] 李永政, 孟煜凡, 樊知遥, 展翰翔. 胰腺神经内分泌肿瘤新辅助治疗研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 481-486.
[13] 陆思楠, 苏同荣, 张启逸. 索凡替尼转化治疗胰腺神经内分泌肿瘤肝转移一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 526-530.
[14] 宋燕京, 乔江春, 宋京海. 中晚期肝癌TACE联合免疫靶向转化治疗后右半肝切除术一例[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 227-230.
[15] 麻凌峰, 张小杉, 施依璐, 段莎莎, 魏颖, 夏士林, 张敏洁, 王雅皙. 纳米泡载药靶向治疗动脉粥样硬化的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(02): 214-218.
阅读次数
全文


摘要