切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2015, Vol. 03 ›› Issue (03) : 153 -159. doi: 10.3877/cma.j.issn.2095-5820.2015.03.005

所属专题: 文献

综述

慢性疾病分子标志物:非编码RNA 研究进展
高卓, 姜晓峰   
  • 收稿日期:2015-09-24 出版日期:2015-08-28
  • 通信作者: 姜晓峰
  • 基金资助:
    国家自然科学基金青年基金资助项目(81502587)

Molecular biomarkers for chronic diseases: progress of non-coding RNAs

Zhuo Gao, Xiaofeng Jiang   

  • Received:2015-09-24 Published:2015-08-28
  • Corresponding author: Xiaofeng Jiang
  • About author:
    Corresponding author: Jiang Xiaofeng, Email:
引用本文:

高卓, 姜晓峰. 慢性疾病分子标志物:非编码RNA 研究进展[J]. 中华临床实验室管理电子杂志, 2015, 03(03): 153-159.

Zhuo Gao, Xiaofeng Jiang. Molecular biomarkers for chronic diseases: progress of non-coding RNAs[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2015, 03(03): 153-159.

非编码RNA包括miRNA、lncRNA、circRNA、snoRNA等,其广泛存在于真核生物细胞内,能够调控基因表达,并参与多种营养物质合成、分解的代谢过程。此外,其表达具有组织特异性,且在真核生物细胞内及循环系统中高度稳定存在,是许多慢性疾病的良好分子标志物。代谢综合征(metabolic syndrome,MS)是以肥胖为基础的多种危险因素的聚集,与激素分泌合成以及营养物质的代谢息息相关,因而会伴随糖尿病、动脉粥样硬化、心脑血管疾病等的发生。寻找MS类疾病的新的分子标志物对其早期诊断是非常必要的,而研究非编码RNA与MS的关系也可进一步阐明MS的发病机制,并为其预防和治疗提供新的方向。

Non-coding RNAs including miRNA, lncRNA, circRNA, snoRNA, etc, which are widely exist in eukaryotic cells, regulate gene expression, participate in the synthesis and the metabolic process of many kinds of nutrients. In addition, its expression has tissue specificity and very stable in the circulation system, so the noon-coding RNA could serve as a biomarker for many chronic diseases. Metabolic syndrome (MS) is a cluster of metabolic risk factors including insulin resistance, hypertension (high blood pressure), cholesterol abnormalities, and blood clotting. Affected individuals are most often overweight or obese. Metabolic syndrome is considered to be a risk factor for cardiovascular diseases and type 2 diabetes that arises due to insulin resistance and the abnormal function and pattern of body fat. Earlier diagnosis is needed to stop this global time bomb, and the relationship between non-coding RNA and MS needs to be further elucidated to provide a new way for the prevention and treatment of MS.

[1]
Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome[J]. Lancet, 2005, 365(9468):1415–1428.
[2]
Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma[J]. Br J Haematol, 2008, 141(5):672–675.
[3]
Margue C, Reinsbach S, Phlippidou D, et al. Comparison of a healthy miRNome with melanoma patient miRNomes: are microRNAs suitable serum biomarkers for cancer[J]? Oncotarget, 2015, 6(14):12110–12127.
[4]
Wilfred BR, Wang WX, Nelson PT. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways[J]. Mol Genet Metab, 2007, 91(3):209–217.
[5]
Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation[J]. J Biol Chem, 2004, 279(50):52361–52365.
[6]
Takanabe R, Ono K, Abe Y, et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet[J]. Biochem Biophys Res Commun, 2008, 376(4):728–732.
[7]
Choi D, Woo M. Executioners of apoptosis in pancreatic {beta}-cells: not just for cell death[J]. Am J Physiol Endocrinol Metab, 2010, 298(4):E735–741.
[8]
Xia HQ, Pan Y, Peng J, et al. Over-expression of miR375 reduces glucose-induced insulin secretion in Nit-1 cells[J]. Mol Biol Rep, 2011, 38(5):3061–3065.
[9]
Tsukamoto Y, Nakada C, Noguchi T, et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta[J]. Cancer Res, 2010, 70(6):2339–2349.
[10]
Ramachandran D, Rov U, Gary S, et al. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets[J]. FEBS J, 2011, 278(7):1167–1174.
[11]
Baroukh N, Ravier MA, Loder Mk, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines[J]. J Biol Chem, 2007, 282(27):19575–19588.
[12]
He A, Zhu L, Gupta N, et al. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes[J]. Mol Endocrinol, 2007, 21(11):2785–2794.
[13]
Jordan SD, Krüger M, Willmes DM, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism[J]. Nat Cell Biol, 2011, 13(4):434–446.
[14]
Erener S, Mojibian M, Fox JK, et al. Circulating miR-375 as a biomarker of β-cell death and diabetes in mice[J]. Endocrinology, 2013, 154(2):603–608.
[15]
Sebastiani G, Grieco FA, Spagnuolo I, et al. Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity[J]. Diabetes Metab Res Rev, 2011, 27(8):862–866.
[16]
Nielsen LB, Wang C, Sørensen K, et al. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression[J]. Exp Diabetes Res, 2012, 2012:896362.
[17]
Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes[J]. Circ Res, 2010, 107(6):810–817.
[18]
Karolina DS, Armugam A, Tavintharan S, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus[J]. PLoS One, 2011, 6(8):e22839.
[19]
Pescador N, Pérez-Barba M, Ibrra JM, et al. Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers[J]. PLoS One, 2013, 8(10):e77251.
[20]
Yang Z, Chen H, Si H, et al. Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes[J]. Acta Diabetol, 2014, 51(5):823–831.
[21]
Libby P, Ridker PM, Hansson GK, et al. Inflammation in atherosclerosis: from pathophysiology to practice[J]. J Am Coll Cardiol, 2009, 54(23):2129–2138.
[22]
Packard RR, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction[J]. Clin Chem, 2008, 54(1):24–38.
[23]
Niedzwiedzka-Rystwej P, Mekal A, Deptula W. Cells of the immune system in atherosclerosis--chosen data[J]. Postepy Hig Med Dosw, 2010, 64:417–422.
[24]
Poliseno L, Tuccoli A, Mariani L, et al. MicroRNAs modulate the angiogenic properties of HUVECs[J]. Blood, 2006, 108(9):3068–3071.
[25]
Minami Y, Satoh M, Maesawa C, et al. Effect of atorvastatin on microRNA 221/222 expression in endothelial progenitor cells obtained from patients with coronary artery disease[J]. Eur J Clin Invest, 2009, 39(5):359–367.
[26]
Zhang Q, Kandic I, Kutryk MJ. Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease[J]. Biochem Biophys Res Commun, 2011, 405(1):42–46.
[27]
Caporali A, Meloni M, Vollenkie C, et al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia[J]. Circulation, 2011, 123(3):282–291.
[28]
Sarkar S, Dey BK, Dutta A. MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A[J]. Mol Biol Cell, 2010, 21(13):2138–2149.
[29]
Bornfeldt KE. The cyclin-dependent kinase pathway moves forward[J]. Circ Res, 2003, 92(4):345–347.
[30]
Menghini R, Casagrande V, Cardellini M, et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1[J]. Circulation, 2009, 120(15):1524–1532.
[31]
Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis[J]. Proc Natl Acad Sci U S A, 2008, 105(36):13421–13426.
[32]
Ito T, Yagi S, Yamakuchi M. MicroRNA-34a regulation of endothelial senescence[J]. Biochem Biophys Res Commun, 2010, 398(4):735–740.
[33]
Zhao T, Li J, Chen AF. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1[J]. Am J Physiol Endocrinol Metab, 2010, 299(1):E110–116.
[34]
Tabuchi T, Satoh M, Itoh T, et al. MicroRNA-34a regulates the longevity-associated protein SIRT1 in coronary artery disease: effect of statins on SIRT1 and microRNA-34a expression[J]. Clin Sci (Lond), 2012, 123(3):161–171.
[35]
Sun X, Icli B, Wara AK, et al. MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation[J]. J Clin Invest, 2012, 122(6):1973–1990.
[36]
Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity[J]. Dev Cell, 2008, 15(2):272–284.
[37]
Ryu HS, Park SY, Ma D, et al. The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes[J]. PLoS One, 2011, 6(3):e17343.
[38]
Vasa-Nicotera M, Chen H, Tuchi P, et al. miR-146a is modulated in human endothelial cell with aging[J]. Atherosclerosis, 2011, 217(2):326–330.
[39]
Fang Y, Shi C, Marduchi E, et al. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro[J]. Proc Natl Acad Sci U S A, 2010, 107(30):13450–13455.
[40]
Weber M, Baker MB, Moore JP, et al. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity[J]. Biochem Biophys Res Commun, 2010, 393(4):643–648.
[41]
Sabatel C, Malyaux N, Bow N, et al. MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells[J]. PLoS One, 2011, 6(2):e16979.
[42]
Sun HX, Zeng DY, Li RT, et al. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase[J]. Hypertension, 2012, 60(6):1407–1414.
[43]
Nazari-Jahantigh M, Wei Y, Noels H, et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages[J]. J Clin Invest, 2012, 122(11):4190–4202.
[44]
Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides[J]. Nature, 2011, 478(7369):404–407.
[45]
Bochenek G, Häsler R, El Khtari NE, et al. The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10[J]. Hum Mol Genet, 2013, 22(22):4516–4527.
[46]
Kumarswamy R, Bauters C, Volkmann I, et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure[J]. Circ Res, 2014, 114(10):1569–1575.
[47]
Krichevsky AM, King KS, Donahue CP, et al. A microRNA array reveals extensive regulation of microRNAs during brain development[J]. RNA, 2003, 9(10):1274–1281.
[48]
Hebert SS, Horré K, Nicolaï L, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression[J]. Proc Natl Acad Sci U S A, 2008, 105(17):6415–6420.
[49]
Nelson PT, Wang WX. MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study[J]. J Alzheimers Dis, 2010, 21(1):75–79.
[50]
Goodall EF, Heath PR, Bandmann O, et al. Neuronal dark matter: the emerging role of microRNAs in neurodegeneration[J]. Front Cell Neurosci, 2013, 7:178.
[51]
Hooper C, Meimaridou E, Tavassoli M, et al. p53 is upregulated in Alzheimer’s disease and induces tau phosphorylation in HEK293a cells[J]. Neurosci Lett, 2007, 418(1):34–37.
[52]
Zovoilis A, aqbemanyah HY, Agis-Balbog RC, et al. microRNA-34c is a novel target to treat dementias[J]. EMBO J, 2011, 30(20):4299–4308.
[53]
Kim J, Yoon H, Ramirez CM, et al. MiR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression[J]. Exp Neurol, 2012, 235(2):476–483.
[54]
Schipper HM, Maes OC, Cherkow HM, et al. MicroRNA expression in Alzheimer blood mononuclear cells[J]. Gene Regul Syst Bio, 2007, 1:263–274.
[55]
Lehmann SM, Krüger C, Park C, et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration[J]. Nat Neurosci, 2012, 15(6):827–835.
[56]
Li Y, Guessous F, Zhang Y, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes[J]. Cancer Res, 2009, 69(19):7569–7576.
[57]
Pang RT, Leung Co, Ye TM, et al. MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells[J]. Carcinogenesis, 2010, 31(6):1037–1044.
[58]
Li WB, Ma MW, Dong LJ, et al. MicroRNA-34a targets notch1 and inhibits cell proliferation in glioblastoma multiforme[J]. Cancer Biol Ther, 2011, 12(6):477–483.
[59]
Bu P, Chen KY, Chen JH, et al. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells[J]. Cell Stem Cell, 2013, 12(5):602–615.
[60]
Winton DJ. miR-34a sets the "sweet spot" for notch in colorectal cancer stem cells[J]. Cell Stem Cell, 2013, 12(5):499–501.
[61]
Yamamura S, Saini S, Maini S, et al. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells[J]. PLoS One, 2012, 7(1):e29722.
[62]
Ma ZL, Hou PP, Li YL, et al. MicroRNA-34a inhibits the proliferation and promotes the apoptosis of non-small cell lung cancer H1299 cell line by targeting TGFβR2[J]. Tumour Biol, 2015, 36(4):2481–2490.
[63]
Li N, Fu H, Tie Y, et al. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells[J]. Cancer Lett, 2009, 275(1):44–53.
[64]
Tanaka N, YoyooKa S, Soh J, et al. Downregulation of microRNA-34 induces cell proliferation and invasion of human mesothelial cells[J]. Oncol Rep, 2013, 29(6):2169–2174.
[65]
Zhang Y, Schiff D, Park D, et al. MicroRNA-608 and microRNA-34a regulate chordoma malignancy by targeting EGFR, Bcl-xL and MET[J]. PLoS One, 2014, 9(3):e91546.
[66]
Menges CW, Kadariya Y, Altomare D, et al. Tumor suppressor alterations cooperate to drive aggressive mesotheliomas with enriched cancer stem cells via a p53-miR-34a-c-Met axis[J]. Cancer Res, 2014, 74(4):1261–1271.
[67]
Aherne ST, Madden SF, Hughes DJ, et al. Circulating miRNAs miR-34a and miR-150 associated with colorectal cancer progression[J]. BMC Cancer, 2015, 15:329.
[68]
Patel D, Boufragech M, Jain M, et al. MiR-34a and miR-483-5p are candidate serum biomarkers for adrenocortical tumors[J]. Surgery, 2013, 154(6):1224–1229.
[69]
Zhou X, Yin C, Dang Y, et al. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer[J]. Sci Rep, 2015, 5:11516.
[70]
Tong YS, Wang XW, Zhou XL, et al. Identification of the long non-coding RNA POU3F3 in plasma as a novel biomarker for diagnosis of esophageal squamous cell carcinoma[J]. Mol Cancer, 2015, 14:3.
[71]
Gao L, Ma J, Mannoor K, et al. Genome-wide small nucleolar RNA expression analysis of lung cancer by next-generation deep sequencing[J]. Int J Cancer, 2015, 136(6):E623–E629.
[1] 朱韵莹, 高晓琳, 戈艳萍, 王张嵩, 林钊宇, 李劲松, 武东辉. 缺氧相关的长链非编码RNA LINC00970在唾液腺腺样囊性癌中的表达及其作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 210-217.
[2] 王欢欢, 郑少祥, 郝金锦, 陈文亮. 胃癌分子分型的研究进展及相关联系[J]. 中华普通外科学文献(电子版), 2024, 18(03): 229-234.
[3] 陆婷, 陈浩, 王雪静, 谭若芸, 彭宇竹. 肾移植术后一年发生代谢综合征的危险因素分析[J]. 中华移植杂志(电子版), 2024, 18(02): 98-103.
[4] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[5] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[6] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[7] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[8] 翟航, 张广权, 吴芳芳, 史宪杰. 非编码RNA调控胰腺纤维化研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 583-587.
[9] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[10] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[11] 胡欣欣, 孟晓凡, 郭兆安. 高血压肾病的发病机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(06): 339-343.
[12] 王健, 赵海剑, 孙静, 张晓雨, 陈柏羽. LncRNA SNHG4表达与结直肠癌预后的关系[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 139-144.
[13] 程晨, 赵从, 蒋媛, 张丽. 术中体温水平对代谢综合征合并胃食管反流病行腹腔镜袖状胃切除联合胃底折叠术患者预后的影响[J]. 中华胃食管反流病电子杂志, 2024, 11(01): 47-52.
[14] 钱昊, 李振振. 代谢综合征与动脉粥样硬化性疾病相关性研究现状与进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(04): 267-273.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要