[1] |
Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome[J]. Lancet, 2005, 365(9468):1415–1428.
|
[2] |
Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma[J]. Br J Haematol, 2008, 141(5):672–675.
|
[3] |
Margue C, Reinsbach S, Phlippidou D, et al. Comparison of a healthy miRNome with melanoma patient miRNomes: are microRNAs suitable serum biomarkers for cancer[J]? Oncotarget, 2015, 6(14):12110–12127.
|
[4] |
Wilfred BR, Wang WX, Nelson PT. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways[J]. Mol Genet Metab, 2007, 91(3):209–217.
|
[5] |
Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation[J]. J Biol Chem, 2004, 279(50):52361–52365.
|
[6] |
Takanabe R, Ono K, Abe Y, et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet[J]. Biochem Biophys Res Commun, 2008, 376(4):728–732.
|
[7] |
Choi D, Woo M. Executioners of apoptosis in pancreatic {beta}-cells: not just for cell death[J]. Am J Physiol Endocrinol Metab, 2010, 298(4):E735–741.
|
[8] |
Xia HQ, Pan Y, Peng J, et al. Over-expression of miR375 reduces glucose-induced insulin secretion in Nit-1 cells[J]. Mol Biol Rep, 2011, 38(5):3061–3065.
|
[9] |
Tsukamoto Y, Nakada C, Noguchi T, et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta[J]. Cancer Res, 2010, 70(6):2339–2349.
|
[10] |
Ramachandran D, Rov U, Gary S, et al. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets[J]. FEBS J, 2011, 278(7):1167–1174.
|
[11] |
Baroukh N, Ravier MA, Loder Mk, et al. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines[J]. J Biol Chem, 2007, 282(27):19575–19588.
|
[12] |
He A, Zhu L, Gupta N, et al. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes[J]. Mol Endocrinol, 2007, 21(11):2785–2794.
|
[13] |
Jordan SD, Krüger M, Willmes DM, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism[J]. Nat Cell Biol, 2011, 13(4):434–446.
|
[14] |
Erener S, Mojibian M, Fox JK, et al. Circulating miR-375 as a biomarker of β-cell death and diabetes in mice[J]. Endocrinology, 2013, 154(2):603–608.
|
[15] |
Sebastiani G, Grieco FA, Spagnuolo I, et al. Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity[J]. Diabetes Metab Res Rev, 2011, 27(8):862–866.
|
[16] |
Nielsen LB, Wang C, Sørensen K, et al. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression[J]. Exp Diabetes Res, 2012, 2012:896362.
|
[17] |
Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes[J]. Circ Res, 2010, 107(6):810–817.
|
[18] |
Karolina DS, Armugam A, Tavintharan S, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus[J]. PLoS One, 2011, 6(8):e22839.
|
[19] |
Pescador N, Pérez-Barba M, Ibrra JM, et al. Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers[J]. PLoS One, 2013, 8(10):e77251.
|
[20] |
Yang Z, Chen H, Si H, et al. Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes[J]. Acta Diabetol, 2014, 51(5):823–831.
|
[21] |
Libby P, Ridker PM, Hansson GK, et al. Inflammation in atherosclerosis: from pathophysiology to practice[J]. J Am Coll Cardiol, 2009, 54(23):2129–2138.
|
[22] |
Packard RR, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction[J]. Clin Chem, 2008, 54(1):24–38.
|
[23] |
Niedzwiedzka-Rystwej P, Mekal A, Deptula W. Cells of the immune system in atherosclerosis--chosen data[J]. Postepy Hig Med Dosw, 2010, 64:417–422.
|
[24] |
Poliseno L, Tuccoli A, Mariani L, et al. MicroRNAs modulate the angiogenic properties of HUVECs[J]. Blood, 2006, 108(9):3068–3071.
|
[25] |
Minami Y, Satoh M, Maesawa C, et al. Effect of atorvastatin on microRNA 221/222 expression in endothelial progenitor cells obtained from patients with coronary artery disease[J]. Eur J Clin Invest, 2009, 39(5):359–367.
|
[26] |
Zhang Q, Kandic I, Kutryk MJ. Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease[J]. Biochem Biophys Res Commun, 2011, 405(1):42–46.
|
[27] |
Caporali A, Meloni M, Vollenkie C, et al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia[J]. Circulation, 2011, 123(3):282–291.
|
[28] |
Sarkar S, Dey BK, Dutta A. MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A[J]. Mol Biol Cell, 2010, 21(13):2138–2149.
|
[29] |
Bornfeldt KE. The cyclin-dependent kinase pathway moves forward[J]. Circ Res, 2003, 92(4):345–347.
|
[30] |
Menghini R, Casagrande V, Cardellini M, et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1[J]. Circulation, 2009, 120(15):1524–1532.
|
[31] |
Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis[J]. Proc Natl Acad Sci U S A, 2008, 105(36):13421–13426.
|
[32] |
Ito T, Yagi S, Yamakuchi M. MicroRNA-34a regulation of endothelial senescence[J]. Biochem Biophys Res Commun, 2010, 398(4):735–740.
|
[33] |
Zhao T, Li J, Chen AF. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1[J]. Am J Physiol Endocrinol Metab, 2010, 299(1):E110–116.
|
[34] |
Tabuchi T, Satoh M, Itoh T, et al. MicroRNA-34a regulates the longevity-associated protein SIRT1 in coronary artery disease: effect of statins on SIRT1 and microRNA-34a expression[J]. Clin Sci (Lond), 2012, 123(3):161–171.
|
[35] |
Sun X, Icli B, Wara AK, et al. MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation[J]. J Clin Invest, 2012, 122(6):1973–1990.
|
[36] |
Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity[J]. Dev Cell, 2008, 15(2):272–284.
|
[37] |
Ryu HS, Park SY, Ma D, et al. The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes[J]. PLoS One, 2011, 6(3):e17343.
|
[38] |
Vasa-Nicotera M, Chen H, Tuchi P, et al. miR-146a is modulated in human endothelial cell with aging[J]. Atherosclerosis, 2011, 217(2):326–330.
|
[39] |
Fang Y, Shi C, Marduchi E, et al. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro[J]. Proc Natl Acad Sci U S A, 2010, 107(30):13450–13455.
|
[40] |
Weber M, Baker MB, Moore JP, et al. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity[J]. Biochem Biophys Res Commun, 2010, 393(4):643–648.
|
[41] |
Sabatel C, Malyaux N, Bow N, et al. MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells[J]. PLoS One, 2011, 6(2):e16979.
|
[42] |
Sun HX, Zeng DY, Li RT, et al. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase[J]. Hypertension, 2012, 60(6):1407–1414.
|
[43] |
Nazari-Jahantigh M, Wei Y, Noels H, et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages[J]. J Clin Invest, 2012, 122(11):4190–4202.
|
[44] |
Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides[J]. Nature, 2011, 478(7369):404–407.
|
[45] |
Bochenek G, Häsler R, El Khtari NE, et al. The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10[J]. Hum Mol Genet, 2013, 22(22):4516–4527.
|
[46] |
Kumarswamy R, Bauters C, Volkmann I, et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure[J]. Circ Res, 2014, 114(10):1569–1575.
|
[47] |
Krichevsky AM, King KS, Donahue CP, et al. A microRNA array reveals extensive regulation of microRNAs during brain development[J]. RNA, 2003, 9(10):1274–1281.
|
[48] |
Hebert SS, Horré K, Nicolaï L, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression[J]. Proc Natl Acad Sci U S A, 2008, 105(17):6415–6420.
|
[49] |
Nelson PT, Wang WX. MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study[J]. J Alzheimers Dis, 2010, 21(1):75–79.
|
[50] |
Goodall EF, Heath PR, Bandmann O, et al. Neuronal dark matter: the emerging role of microRNAs in neurodegeneration[J]. Front Cell Neurosci, 2013, 7:178.
|
[51] |
Hooper C, Meimaridou E, Tavassoli M, et al. p53 is upregulated in Alzheimer’s disease and induces tau phosphorylation in HEK293a cells[J]. Neurosci Lett, 2007, 418(1):34–37.
|
[52] |
Zovoilis A, aqbemanyah HY, Agis-Balbog RC, et al. microRNA-34c is a novel target to treat dementias[J]. EMBO J, 2011, 30(20):4299–4308.
|
[53] |
Kim J, Yoon H, Ramirez CM, et al. MiR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression[J]. Exp Neurol, 2012, 235(2):476–483.
|
[54] |
Schipper HM, Maes OC, Cherkow HM, et al. MicroRNA expression in Alzheimer blood mononuclear cells[J]. Gene Regul Syst Bio, 2007, 1:263–274.
|
[55] |
Lehmann SM, Krüger C, Park C, et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration[J]. Nat Neurosci, 2012, 15(6):827–835.
|
[56] |
Li Y, Guessous F, Zhang Y, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes[J]. Cancer Res, 2009, 69(19):7569–7576.
|
[57] |
Pang RT, Leung Co, Ye TM, et al. MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells[J]. Carcinogenesis, 2010, 31(6):1037–1044.
|
[58] |
Li WB, Ma MW, Dong LJ, et al. MicroRNA-34a targets notch1 and inhibits cell proliferation in glioblastoma multiforme[J]. Cancer Biol Ther, 2011, 12(6):477–483.
|
[59] |
Bu P, Chen KY, Chen JH, et al. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells[J]. Cell Stem Cell, 2013, 12(5):602–615.
|
[60] |
Winton DJ. miR-34a sets the "sweet spot" for notch in colorectal cancer stem cells[J]. Cell Stem Cell, 2013, 12(5):499–501.
|
[61] |
Yamamura S, Saini S, Maini S, et al. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells[J]. PLoS One, 2012, 7(1):e29722.
|
[62] |
Ma ZL, Hou PP, Li YL, et al. MicroRNA-34a inhibits the proliferation and promotes the apoptosis of non-small cell lung cancer H1299 cell line by targeting TGFβR2[J]. Tumour Biol, 2015, 36(4):2481–2490.
|
[63] |
Li N, Fu H, Tie Y, et al. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells[J]. Cancer Lett, 2009, 275(1):44–53.
|
[64] |
Tanaka N, YoyooKa S, Soh J, et al. Downregulation of microRNA-34 induces cell proliferation and invasion of human mesothelial cells[J]. Oncol Rep, 2013, 29(6):2169–2174.
|
[65] |
Zhang Y, Schiff D, Park D, et al. MicroRNA-608 and microRNA-34a regulate chordoma malignancy by targeting EGFR, Bcl-xL and MET[J]. PLoS One, 2014, 9(3):e91546.
|
[66] |
Menges CW, Kadariya Y, Altomare D, et al. Tumor suppressor alterations cooperate to drive aggressive mesotheliomas with enriched cancer stem cells via a p53-miR-34a-c-Met axis[J]. Cancer Res, 2014, 74(4):1261–1271.
|
[67] |
Aherne ST, Madden SF, Hughes DJ, et al. Circulating miRNAs miR-34a and miR-150 associated with colorectal cancer progression[J]. BMC Cancer, 2015, 15:329.
|
[68] |
Patel D, Boufragech M, Jain M, et al. MiR-34a and miR-483-5p are candidate serum biomarkers for adrenocortical tumors[J]. Surgery, 2013, 154(6):1224–1229.
|
[69] |
Zhou X, Yin C, Dang Y, et al. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer[J]. Sci Rep, 2015, 5:11516.
|
[70] |
Tong YS, Wang XW, Zhou XL, et al. Identification of the long non-coding RNA POU3F3 in plasma as a novel biomarker for diagnosis of esophageal squamous cell carcinoma[J]. Mol Cancer, 2015, 14:3.
|
[71] |
Gao L, Ma J, Mannoor K, et al. Genome-wide small nucleolar RNA expression analysis of lung cancer by next-generation deep sequencing[J]. Int J Cancer, 2015, 136(6):E623–E629.
|