1 |
胡朝军,李永哲. 免疫质谱技术及其临床研究应用前景[J]. 临床检验杂志,2010,28(4):303-304.
|
2 |
Gu H, Ren J, Jia X,et al.Identification of post-translational modifications from serum/plasma by immunoaffinity enrichment and LC-MS/MS analysis without depletion of abundant proteins[J].Methods Mol Biol, 2017,1619:119-125.
|
3 |
Camenzind AG, van der Gugten JG, Popp R, et al. Development and evaluation of an immuno-MALDI(iMALDI) assay for angiotensin I and the diagnosis of secondary hypertension[J]. Clin Proteomics, 2013,10(1):20.
|
4 |
Chambers AG, Percy AJ, Simon1 R, et al. MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum[J]. Expert Rev Proteomics, 2014,11(2):137-148.
|
5 |
Greening DW, Xu R, Ji H, et al. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods[J]. Methods Mol Biol, 2015,1295:179-209.
|
6 |
Schwertman P, Bezstarosti K, Laffeber C, et al. An immunoaffinity purification method for the proteomic analysis of ubiquitinated protein complexes[J]. Anal Biochem, 2013,440(2):227-236.
|
7 |
Parkera CE, Borchersa CH.Mass spectrometry based biomarker discovery, verification, and validation-quality assurance and control of protein biomarker assa[J]. Mol Onocol, 2014,8(4):840-858.
|
8 |
Berna MJ, Zhen Y, Watson DE, et al. Strategic use of immunoprecipitation and LC/MS/MS for trace-level protein quantification: myosin light chain 1, abiomarker of cardiac necrosis[J]. Anal Chem, 2007,79(1)4199-4205.
|
9 |
Krastins B, Prakash A, Sarracino DA, et al. Rapid development of sensitive, high-throughput,quantitative and highly selective mass spectrometric targeted immunoassays for clinically important proteins in human plasma and serum[J]. Clin Biochem, 2013,46(6): 399-410.
|
10 |
Li H, Popp R, Frohlich B, et al. Peptide and Protein Quantification Using Automated Immuno-MALDI(iMALDI)[J]. J Vis Exp, 2017,(126).
|
11 |
Li H, Popp R, Chen M, et al. Bead-extractor assisted ready-to-use reagent system (BEARS) for immunoprecipitation coupled to MALDI-MS[J]. Anal Chem, 2017,89(7):3834-3839.
|
12 |
Huang C, Zhan T, Liu Y, et al. Glycomic profiling of carcinoembryonic antigen isolated from human tumor tissue[J]. Clin Proteomics, 2015, 12(1):17.
|
13 |
Lee SH, Jeong S, Lee J, et al. Glycomic profiling of targeted serum haptoglobinfor gastric cancer using nano LC/MS and LC/MS/MS[J].Mol BioSyst, 2016,12(12):3611-3621.
|
14 |
Kim JH, Lee SH, Choi S, et al. Direct analysis of aberrant glycosylation on haptoglobin in patients with gastric cancer[J]. Oncotarget, 2017,8(7):11094-11104.
|
15 |
Kountourakis P, Psyrri A, Scorilas A, et al. Prognostic value of kallikrein-related peptidase 6protein expression levels in advanced ovarian cancer evaluated by automated quantitative analysis (AQUA)[J]. Cancer Sci, 2008,99(11):2224-2229.
|
16 |
Ni X, Zhang W, Huang KC, et al. Characterisation of human kallikrein 6/protease M expression in ovarian cancer[J]. Br J Cancer, 2004,91 (4):725-731.
|
17 |
White NM, Mathews M, Yousef GM, et al. Human kallikrein related peptidases 6 and 13 in combination with CA125 is a more sensitive test for ovarian cancer than CA125 alone[J]. Cancer Biomark, 2009,5(6): 279-287.
|
18 |
White NM, Mathews M, Yousef GM, et al. KLK6 and KLK13 predict tumor recurrence in epithelial ovarian carcinoma[J]. Br J Cancer, 2009, 101(7):1107-1113.
|
19 |
Korbakis D, Soosaipillai A, Diamandis EP. Diamandis.Study of kallikrein-related peptidase 6 (KLK6) and its complex with α1-antitrypsin in biological fluids[J]. Clin Chem Lab Med, 2017,55(9): 1385-1396.
|
20 |
Siegel R, Ma J, Zou Z, et al. Cancer statistics 2014[J]. CA Cancer J Clin, 2014,64(1):9-29.
|
21 |
Humphrey ES, Su SP, Nagrial AM, et al. Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling[J]. Mol Cell Proteomics, 2016,15(8):2671-2685.
|
22 |
Zhu J, Nie S, Wu J, et al. Target proteomic profiling of frozen pancreatic CD24+ adenocarcinoma tissues by immuno-laser capture microdissection and nano-LC-MS/MS[J]. J Proteome Res, 2013,12(6): 2791-2804.
|
23 |
Simon RH, Lovett EJ 3rd, Tomaszek D, et al. Electrical stimulation of the midbrain mediates metastatic tumor growth[J]. Science, 1980, 209(4461):1132-1133.
|
24 |
Magnon C, Hall SJ, Lin J, et al. Autonomic nerve development contributes to prostate cancer progression[J]. Science, 2013,341(6142):1236361.
|
25 |
Thaker PH, Han LY, Kamat AA, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma[J]. Nat Med,2006,12(8):939-944.
|
26 |
Sloan EK, Priceman SJ, Cox BF, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer[J]. Cancer Res, 2010,70(18):7042-7052.
|
27 |
Hara MR, Kovacs JJ, Whalen EJ, et al. A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1[J]. Nature, 2011,477(7364):349-353.
|
28 |
Wan C, Gong C, Zhang H, et al. β2-adrenergic receptor signaling promotes pancreatic ductal adenocarcinoma (PDAC) progression through facilitating PCBP2-dependent c-myc expression[J]. Cancer Lett, 2016, 373(1):67-76.
|
29 |
Popp R, Li H, LeBlanc A, et al. Immuno-MALDI (iMALDI) for quantifying AKT1 and AKT2in breast and colorectal cancer cell lines and tumors[J]. Anal Chem,2017[Epub ahead of print].
|
30 |
De Marchi T, Kuhn E, Dekker LJ, et al. Targeted MS assay predicting tamoxifen resistance in estrogen-receptor-positive breast cancer tissues and sera[J]. J Proteome Res, 2016,15(4):1230-1242.
|
31 |
Gu H, Ren JM, Jia X, et al. Quantitative profiling of post- translational modifications by immunoaffinity enrichment and LC-MS/MS in cancer serum without immunodepletion[J]. Mol Cell Proteomics, 2016,15(2):692-702.
|
32 |
Ou WB, Lu M, Eilers G, et al. Co-targeting of FAK and MDM2 triggers additive anti-proliferative effects in mesothelioma via a coordinated reactivation of p53[J]. Br J Cancer, 2016,115(10):1253-1263.
|
33 |
Matta A, Masui O, Siu KW, et al. Identification of 14-3-3zeta associated protein networks in oral cancer[J]. Proteomics, 2016,16(7):1079-1089.
|
34 |
Darrah E, Kim A, Zhang X, et al. Proteolysis by granzyme B enhances presentation of autoantigenic peptidylarginine deiminase 4 epitopes in rheumatoid arthritis[J]. J Proteome Res, 2017,16(1):355-365.
|
35 |
Ben-Ami Shor D, Blank M, Reuter S, et al. Anti-ribosomal-P antibodies accelerate lupus glomerulonephritis and induce lupus nephritis in natıve mice[J]. J Autoimmun, 2014,54:118-126.
|
36 |
Caponi L, Bombardieri S, Migliorini P. Anti-ribosomal antibodies bind the Sm proteins D and B/B′[J]. Clin Exp Immunol, 1998,112(1):139-143.
|
37 |
Al Kindi MA, Colella AD, Beroukas D, et al. Lupus anti-ribosomal P autoantibody proteomes express convergent biclonal signatures[J]. Clin Exp Immunol, 2016,184(1):29-35.
|
38 |
Lukas C, Landewé R, Sieper J, et al. Development of an ASAS-endorsed disease activity score (ASDAS) in patients with ankylosing spondylitis[J]. Ann Rheum Dis, 2009,68(1):18-24.
|
39 |
van den Berg R, van der Heijde DM.How should we diagnose spondyloarthritis according to the ASAS classification criteria:a guide for practicing physicians[J]. Pol Arch Med Wewn, 2010,120(11): 452-457.
|
40 |
Robinson PC, Wordsworth BP, Reveille JD, et al. Axial spondyloar thritis:a new disease entity, not necessarily early ankylosing spondylitis[J]. Ann Rheum Dis, 2013,72(2):162-164.
|
41 |
Kabeerdoss J, Kurien BT, Ganapati A, et al. Proteomics in rheumatology[J]. Int J Rheum Dis, 2015,18(8):815-817.
|
42 |
Li Y, Sun X, Zhang X, et al. Establishment of a decision tree model for diagnosis of early rheumatoid arthritis by proteomic fingerprinting[J].Int J Rheum Dis, 2015,18(8):835-841.
|
43 |
Martın-Esteban A, Guasp P, Barnea E, et al. Functional interaction of the ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 2 with the HLA-B*27 peptidome in human cells[J]. Arthritis Rheumatol, 2016,10(68):2466-2475.
|
44 |
Kenna TJ, Brown MA. Immunopathogenesis of ankylosing spondylitis[J]. Int J Clin Rheumatol, 2013,8(2):265-274.
|
45 |
Manz BN, Jackson BL, Petit RS, et al. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters[J]. Proc Natl Acad Sci U S A, 2011,108(22):9089- 9094.
|
46 |
Evans DM, Spencer CC, Pointon JJ, et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility[J].Nat Genet 2011,43(8):761-767.
|
47 |
Skyler JS. Primary and secondary prevention of type 1 diabetes[J]. Diabet Med, 2013,30(2):161-169.
|
48 |
Michels A, Zhang L, Khadra A, et al. Prediction and prevention of type 1 diabetes: update on success of prediction andstruggles at prevention[J]. Pediatr Diabetes, 2015,16(7):465-484.
|
49 |
Luo X, Herold KC, Miller SD. Immunotherapy of type 1 diabetes: where arewe and where should we be going?[J] Immunity, 2010,32(4):488-499.
|
50 |
Palmer JP, Asplin CM, Clemons P, et al. Insulin antibodies in insulindependent diabetics before insulin treatment[J]. Science, 1983,222(4630):1337-1339.
|
51 |
Baekkeskov S, Aanstoot HJ, Christgau S, et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase[J]. Nature, 1990,347(6298):151-156.
|
52 |
Payton MA, Hawkes CJ, Christie MR. Relationship of the 37,000- and 40,000-M(r) tryptic fragments of islet antigens in insulin-dependent diabetes to the protein tyrosine phosphatase-like molecule IA-2 (ICA512)[J]. J Clin Invest, 1995,96(3):1506-1511.
|
53 |
Wenzlau JM, Juhl K, Yu L,et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes[J]. Proc Natl Acad Sci U S A, 2007,104(43):17040-17045.
|
54 |
McLaughlin KA, Richardson CC, Ravishankar A, et al. Identification of tetraspanin-7 as a target of autoantibodies in type 1 diabetes[J]. Diabetes, 2016,65(6):1690-1698.
|
55 |
Augutis K, Axelsson M, Portelius E, et al. Cerebrospinal fluid biomarkers of b-amyloid metabolism in multiple sclerosis[J]. Mult Scler J, 2012,9(5):543-552.
|
56 |
Rosenberg RN. Translational research on the way to effective therapy for Alzheimer disease[J]. Arch Gen Psychiatry, 2005,62:1186-1192.
|
57 |
Mayeux R. Epidemiology of neurodegeneration[J]. Annu Rev Neurosci, 2003,26:81-104.
|
58 |
Rosenmann H. CSF biomarkers for amyloid and tau pathology in Alzheimer′s disease[J]. J Mol Neurosci, 2012,47(1):1-14.
|
59 |
Cohen TJ, Guo JL, Hurtado DE, et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation[J]. Nat Commun, 2011,2:252.
|
60 |
Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins[J]. Mol Cell Proteomics, 2006,5(4):573-588.
|
61 |
Domanski D, Percy AJ, Yang J, et al. MRM-based multiplexed quantitation of 67 putative cardiovascular disease biomarkers in human plasma[J]. Proteomics, 2012,12(8):1222-1243.
|
62 |
Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative [J]. Nat Chem Biol, 2005,1(5):252-262.
|
63 |
McAvoy T, Lassman ME, Spellman DS, et al. Quantification of tau in cerebrospinal fluid by immunoaffinity enrichment and tandem mass spectrometry[J]. Clin Chem, 2014,60(4):683-689.
|
64 |
Chen Z, Strack AM, Stefanni AC, et al. Validation of human ApoB and ApoAI immunoturbidity assays for non-human primate dyslipidemia and atherosclerosis research[J]. J Cardiovasc Transl Res, 2011,4(3):373-383.
|
65 |
Doody RS, Raman R, Farlow M, et al. A phase 3 trial of semagacestat for treatment of Alzheimer′s disease[J]. N Engl J Med, 2013,369(4): 341-350.
|
66 |
Coric V, van Dyck CH, Salloway S, et al. Safety and tolerability of the Y-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease[J]. Arch Neurol, 2012,69(11):1430-1440.
|
67 |
Barthet G, Georgakopoulos A, Robakis NK. Cellular mechanisms of gamma-secretase substrate selection, processing and toxicity[J]. Prog Neurobiol, 2012,98(2):166-175.
|
68 |
Sjödin S, Andersson KA, Mercken M, et al. APLP1 as a cerebrospinal fluid biomarker for γ-secretase modulator treatment[J]. Alzheimer′s Res Ther, 2015,7(1):77.
|
69 |
Sun Z, Xie Y, Chen Y, et al. Rab21, a novel PS1 interactor, regulates γ-secretase activity via PS1 subcellular distribution[J]. Mol Neurobiol, 2017[Epub ahead of print].
|
70 |
Swardfager W, Lanctot K, Rothenburg L, et al. A meta-analysis of cytokines in Alzheimer′s disease[J]. Biol Psychiatry, 2010,68(10):930-941.
|
71 |
Mattsson N, Olsson M, Gustavsson MK, et al. Amyloid-β metabolism in Niemann-Pick C disease models and patients[J]. Metab Brain Dis, 2012, 27(4):573-585.
|
72 |
Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD:disrupted RNA and protein homeostasis[J]. Neuron, 2013,79(3):416-438.
|
73 |
Li Y, Collins M, An J, et al. Immunoprecipitation and mass spectrometry defines anextensive RBM45 protein-protein interaction network[J]. Brain Res, 2016,647:79-93.
|
74 |
Li Y, Collins M, Geiser R, et al. RBM45 homo-oligomerization mediates association with ALS-linked proteins and stress granules [J].Sci, Rep, 2015,5:14262.
|
75 |
Nittis T, Guittat L, LeDue RD, et al. Revealing novel telomere proteins using in vivo cross-linking,tandem affinity purification,and label-free quantitative LC-FTICR-MS[J]. Mol Cell Proteom, 2010,9(6):1144-1156.
|
76 |
Yassine H, Borges CR, Schaab MR, et al. Mass spectrometric immunoassay and MRM as targeted MS-based quantitative approaches in biomarker development: potential applications to cardiovascular disease and diabetes[J]. Proteomics Clin Appl, 2013,7(7-8):528-540.
|
77 |
Gowri MS, Van der Westhuyzen DR, Bridges SR, et al. Decreased protection by HDL from poorly controlled type 2 diabetic subjects against LDL oxidation may Be due to the abnormal composition of HDL[J]. Arterioscler Thromb Vasc Biol, 1999,19(9):2226-2233.
|
78 |
Barter PJ, Nicholls S, Rye KA, et al. Antiinflammatory properties of HDL[J]. Circ Res, 2004,95(8):764-772.
|
79 |
Panzenbock U, Stocker R. Formation of methionine sulfoxide- containing specific forms of oxidized high-density lipoproteins[J]. Biochim Biophys Acta, 2005,1703(2):171-181.
|
80 |
Green PS, Vaisar T, Pennathur S, et al. Combined statin and niacin therapy remodels the high-density lipoprotein proteome[J]. Circulation, 2008,118(12):1259-1267.
|
81 |
Navab M, Hama SY, Hough GP, et al. A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. J Lipid Res, 2001,42(8):1308-1317.
|
82 |
Malle E, Sodin-Semrl S, Kovacevic A. Serum amyloid A: an acute-phase protein involved in tumour pathogenesis[J]. Cell Mol Life Sci, 2009, 66(1):9-26.
|
83 |
Zhao Y, He X, Shi X, et al. Association between serum amyloid A and obesity: a meta-analysis and systematic review[J]. Inflamm Res, 2010, 59(5):323-334.
|
84 |
Tolson J, Bogumil R, Brunst E, et al. Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients[J]. Laboratory Investigation, 2004,84 (7):845-856.
|
85 |
Tumblin A, Tailor A, Hoehn GT, et al. Apolipoprotein AI and serum amyloid A plasma levels are biomarkers of acute painful episodes in patients with sickle cell disease[J]. Haematologica, 2010,95(9):1467-1472.
|
86 |
Yassine HN, Trenchevska O, He H, et al. Serum amyloid a truncations in type 2 diabetes mellitus. PLoS One, 2015;10(1):e0115320.
|
87 |
Wang CS, McConathy WJ, Kloer HU, et al. Alaupovic P. Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-Ⅲ[J]. J Clin Investigat,1985,75(2):384-390.
|
88 |
Fredenrich A, Giroux L, Tremblay M, et al. Plasma lipoprotein distribution of apoC-Ⅲ in normolipidemic and hypertriglyceridemic subjects: comparison of the apoC-Ⅲ to apoE ratio in different lipoprotein fractions[J]. J Lipid Res, 1997,38(7):1421-1432.
|
89 |
Windler E, Havel RJ. Inhibitory effects of C apolipoproteins from rats and humans on the uptake of triglyceride-rich lipoproteins and their remnants by the perfused rat liver[J]. J Lipid Res, 1985,26(5):556-565.
|
90 |
Brewer HB Jr, Shulman R, Herbert P, et al. The complete amino acid sequence of alanine apolipoprotein (apoC-Ⅲ), an apolipoprotein from human plasma very low density lipoproteins[J]. J Biol Chem, 1974,249 (15):4975-4984.
|
91 |
Vaith P, Assmann G, Uhlenbruck G. Characterization of the oligosaccharide side chain of apolipoprotein C-Ⅲ from human plasma very low density lipoproteins[J]. Biochim Biophys Acta, 1978,541(2): 234-240.
|
92 |
Zannis VI, Breslow JL. Genetic mutations affecting human lipoprotein metabolism. Adv Hum Genet. 1985;14:125-215, 383-6.
|
93 |
Mann CJ, Troussard AA, Yen FT, et al. Inhibitory effects of specific apolipoprotein C-Ⅲ isoforms on the binding of triglyceride-rich lipoproteins to the lipolysis-stimulated receptor[J]. J Biol chem, 1997,272(50):31348-31354.
|
94 |
Holleboom AG, Karlsson H, Lin RS, et al. Heterozygosity for a lossof-function mutation in GALNT2 improves plasma triglyceride clearance in man[J]. Cell Metab, 2011,14(6):811-818.
|
95 |
Catapano AL. Activation of lipoprotein lipase by apolipoprotein C-II is modulated by the COOH terminal region of apolipoprotein C-Ⅲ[J]. Chem Phys Lipids, 1987,45(1):39-47.
|
96 |
Yassine HN, Trenchevska O, Ramrakhiani A,et al. The association of human apolipoprotein C-III sialylation proteoforms with plasma triglycerides[J]. PLoS One, 2015,10(12):e0144138.
|