切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2017, Vol. 05 ›› Issue (04) : 200 -211. doi: 10.3877/cma.j.issn.2095-5820.2017.04.003

所属专题: 文献

综述

免疫质谱技术及其临床研究应用进展
程琳琳1, 李永哲1,()   
  1. 1. 100730 中国医学科学院北京协和医学院北京协和医院风湿免疫科 风湿免疫病学教育部重点实验室
  • 收稿日期:2017-09-24 出版日期:2017-11-28
  • 通信作者: 李永哲
  • 基金资助:
    国家自然科学基金项目(81671618、81373188); 国家重点研发计划资助课题(2016YFC0903900); 首都卫生发展科研专项资助课题(2014-1-4011); 中国医学科学院医学与健康科技创新工程项目资助课题(2017-12M-3-001)

Advances in immune mass spectrometry and its clinical application

Linlin Cheng1, Yongzhe Li1,()   

  1. 1. Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
  • Received:2017-09-24 Published:2017-11-28
  • Corresponding author: Yongzhe Li
  • About author:
    Corresponding author: Li Yongzhe, Email:
引用本文:

程琳琳, 李永哲. 免疫质谱技术及其临床研究应用进展[J/OL]. 中华临床实验室管理电子杂志, 2017, 05(04): 200-211.

Linlin Cheng, Yongzhe Li. Advances in immune mass spectrometry and its clinical application[J/OL]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2017, 05(04): 200-211.

免疫质谱技术是新近发展起来的联合抗体分离技术与生物质谱技术的一种分析技术,除具有传统的放射免疫技术、酶免疫技术和荧光免疫技术的高特异、高灵敏和质谱技术的高通量特点外,还具有分辨修饰和变异的高度精确性。在肿瘤、自身免疫病、代谢性疾病和退行性疾病等的诊断、病情监测和疗效判断等方面都将有广阔的应用前景。

Immunologic spectrometry is a newly developed technology with combination of antibody isolation and biological mass spectrometry. It has the merits including high specificity and high sensitivity that are similar to traditional radioimmunoassay, enzyme immunoassay and fluorescence immunity technology. It is also a high-throughput technology that is simitar to mass spectrometry. Immuologic mass spectrometry also posesses highle accuracy and resotation for modification and variation. It will have a broad application in tumor, autoimmune diseases, metabolic diseases and degenerative diseases diagnosis, disease monitoring and curative efficact judgments, etc.

1
胡朝军,李永哲. 免疫质谱技术及其临床研究应用前景[J]. 临床检验杂志,2010,28(4):303-304.
2
Gu H, Ren J, Jia X,et al.Identification of post-translational modifications from serum/plasma by immunoaffinity enrichment and LC-MS/MS analysis without depletion of abundant proteins[J].Methods Mol Biol, 2017,1619:119-125.
3
Camenzind AG, van der Gugten JG, Popp R, et al. Development and evaluation of an immuno-MALDI(iMALDI) assay for angiotensin I and the diagnosis of secondary hypertension[J]. Clin Proteomics, 2013,10(1):20.
4
Chambers AG, Percy AJ, Simon1 R, et al. MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum[J]. Expert Rev Proteomics, 2014,11(2):137-148.
5
Greening DW, Xu R, Ji H, et al. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods[J]. Methods Mol Biol, 2015,1295:179-209.
6
Schwertman P, Bezstarosti K, Laffeber C, et al. An immunoaffinity purification method for the proteomic analysis of ubiquitinated protein complexes[J]. Anal Biochem, 2013,440(2):227-236.
7
Parkera CE, Borchersa CH.Mass spectrometry based biomarker discovery, verification, and validation-quality assurance and control of protein biomarker assa[J]. Mol Onocol, 2014,8(4):840-858.
8
Berna MJ, Zhen Y, Watson DE, et al. Strategic use of immunoprecipitation and LC/MS/MS for trace-level protein quantification: myosin light chain 1, abiomarker of cardiac necrosis[J]. Anal Chem, 2007,79(1)4199-4205.
9
Krastins B, Prakash A, Sarracino DA, et al. Rapid development of sensitive, high-throughput,quantitative and highly selective mass spectrometric targeted immunoassays for clinically important proteins in human plasma and serum[J]. Clin Biochem, 2013,46(6): 399-410.
10
Li H, Popp R, Frohlich B, et al. Peptide and Protein Quantification Using Automated Immuno-MALDI(iMALDI)[J]. J Vis Exp, 2017,(126).
11
Li H, Popp R, Chen M, et al. Bead-extractor assisted ready-to-use reagent system (BEARS) for immunoprecipitation coupled to MALDI-MS[J]. Anal Chem, 2017,89(7):3834-3839.
12
Huang C, Zhan T, Liu Y, et al. Glycomic profiling of carcinoembryonic antigen isolated from human tumor tissue[J]. Clin Proteomics, 2015, 12(1):17.
13
Lee SH, Jeong S, Lee J, et al. Glycomic profiling of targeted serum haptoglobinfor gastric cancer using nano LC/MS and LC/MS/MS[J].Mol BioSyst, 2016,12(12):3611-3621.
14
Kim JH, Lee SH, Choi S, et al. Direct analysis of aberrant glycosylation on haptoglobin in patients with gastric cancer[J]. Oncotarget, 2017,8(7):11094-11104.
15
Kountourakis P, Psyrri A, Scorilas A, et al. Prognostic value of kallikrein-related peptidase 6protein expression levels in advanced ovarian cancer evaluated by automated quantitative analysis (AQUA)[J]. Cancer Sci, 2008,99(11):2224-2229.
16
Ni X, Zhang W, Huang KC, et al. Characterisation of human kallikrein 6/protease M expression in ovarian cancer[J]. Br J Cancer, 2004,91 (4):725-731.
17
White NM, Mathews M, Yousef GM, et al. Human kallikrein related peptidases 6 and 13 in combination with CA125 is a more sensitive test for ovarian cancer than CA125 alone[J]. Cancer Biomark, 2009,5(6): 279-287.
18
White NM, Mathews M, Yousef GM, et al. KLK6 and KLK13 predict tumor recurrence in epithelial ovarian carcinoma[J]. Br J Cancer, 2009, 101(7):1107-1113.
19
Korbakis D, Soosaipillai A, Diamandis EP. Diamandis.Study of kallikrein-related peptidase 6 (KLK6) and its complex with α1-antitrypsin in biological fluids[J]. Clin Chem Lab Med, 2017,55(9): 1385-1396.
20
Siegel R, Ma J, Zou Z, et al. Cancer statistics 2014[J]. CA Cancer J Clin, 2014,64(1):9-29.
21
Humphrey ES, Su SP, Nagrial AM, et al. Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling[J]. Mol Cell Proteomics, 2016,15(8):2671-2685.
22
Zhu J, Nie S, Wu J, et al. Target proteomic profiling of frozen pancreatic CD24+ adenocarcinoma tissues by immuno-laser capture microdissection and nano-LC-MS/MS[J]. J Proteome Res, 2013,12(6): 2791-2804.
23
Simon RH, Lovett EJ 3rd, Tomaszek D, et al. Electrical stimulation of the midbrain mediates metastatic tumor growth[J]. Science, 1980, 209(4461):1132-1133.
24
Magnon C, Hall SJ, Lin J, et al. Autonomic nerve development contributes to prostate cancer progression[J]. Science, 2013,341(6142):1236361.
25
Thaker PH, Han LY, Kamat AA, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma[J]. Nat Med,2006,12(8):939-944.
26
Sloan EK, Priceman SJ, Cox BF, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer[J]. Cancer Res, 2010,70(18):7042-7052.
27
Hara MR, Kovacs JJ, Whalen EJ, et al. A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1[J]. Nature, 2011,477(7364):349-353.
28
Wan C, Gong C, Zhang H, et al. β2-adrenergic receptor signaling promotes pancreatic ductal adenocarcinoma (PDAC) progression through facilitating PCBP2-dependent c-myc expression[J]. Cancer Lett, 2016, 373(1):67-76.
29
Popp R, Li H, LeBlanc A, et al. Immuno-MALDI (iMALDI) for quantifying AKT1 and AKT2in breast and colorectal cancer cell lines and tumors[J]. Anal Chem,2017[Epub ahead of print].
30
De Marchi T, Kuhn E, Dekker LJ, et al. Targeted MS assay predicting tamoxifen resistance in estrogen-receptor-positive breast cancer tissues and sera[J]. J Proteome Res, 2016,15(4):1230-1242.
31
Gu H, Ren JM, Jia X, et al. Quantitative profiling of post- translational modifications by immunoaffinity enrichment and LC-MS/MS in cancer serum without immunodepletion[J]. Mol Cell Proteomics, 2016,15(2):692-702.
32
Ou WB, Lu M, Eilers G, et al. Co-targeting of FAK and MDM2 triggers additive anti-proliferative effects in mesothelioma via a coordinated reactivation of p53[J]. Br J Cancer, 2016,115(10):1253-1263.
33
Matta A, Masui O, Siu KW, et al. Identification of 14-3-3zeta associated protein networks in oral cancer[J]. Proteomics, 2016,16(7):1079-1089.
34
Darrah E, Kim A, Zhang X, et al. Proteolysis by granzyme B enhances presentation of autoantigenic peptidylarginine deiminase 4 epitopes in rheumatoid arthritis[J]. J Proteome Res, 2017,16(1):355-365.
35
Ben-Ami Shor D, Blank M, Reuter S, et al. Anti-ribosomal-P antibodies accelerate lupus glomerulonephritis and induce lupus nephritis in natıve mice[J]. J Autoimmun, 2014,54:118-126.
36
Caponi L, Bombardieri S, Migliorini P. Anti-ribosomal antibodies bind the Sm proteins D and B/B′[J]. Clin Exp Immunol, 1998,112(1):139-143.
37
Al Kindi MA, Colella AD, Beroukas D, et al. Lupus anti-ribosomal P autoantibody proteomes express convergent biclonal signatures[J]. Clin Exp Immunol, 2016,184(1):29-35.
38
Lukas C, Landewé R, Sieper J, et al. Development of an ASAS-endorsed disease activity score (ASDAS) in patients with ankylosing spondylitis[J]. Ann Rheum Dis, 2009,68(1):18-24.
39
van den Berg R, van der Heijde DM.How should we diagnose spondyloarthritis according to the ASAS classification criteria:a guide for practicing physicians[J]. Pol Arch Med Wewn, 2010,120(11): 452-457.
40
Robinson PC, Wordsworth BP, Reveille JD, et al. Axial spondyloar thritis:a new disease entity, not necessarily early ankylosing spondylitis[J]. Ann Rheum Dis, 2013,72(2):162-164.
41
Kabeerdoss J, Kurien BT, Ganapati A, et al. Proteomics in rheumatology[J]. Int J Rheum Dis, 2015,18(8):815-817.
42
Li Y, Sun X, Zhang X, et al. Establishment of a decision tree model for diagnosis of early rheumatoid arthritis by proteomic fingerprinting[J].Int J Rheum Dis, 2015,18(8):835-841.
43
Martın-Esteban A, Guasp P, Barnea E, et al. Functional interaction of the ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 2 with the HLA-B*27 peptidome in human cells[J]. Arthritis Rheumatol, 2016,10(68):2466-2475.
44
Kenna TJ, Brown MA. Immunopathogenesis of ankylosing spondylitis[J]. Int J Clin Rheumatol, 2013,8(2):265-274.
45
Manz BN, Jackson BL, Petit RS, et al. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters[J]. Proc Natl Acad Sci U S A, 2011,108(22):9089- 9094.
46
Evans DM, Spencer CC, Pointon JJ, et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility[J].Nat Genet 2011,43(8):761-767.
47
Skyler JS. Primary and secondary prevention of type 1 diabetes[J]. Diabet Med, 2013,30(2):161-169.
48
Michels A, Zhang L, Khadra A, et al. Prediction and prevention of type 1 diabetes: update on success of prediction andstruggles at prevention[J]. Pediatr Diabetes, 2015,16(7):465-484.
49
Luo X, Herold KC, Miller SD. Immunotherapy of type 1 diabetes: where arewe and where should we be going?[J] Immunity, 2010,32(4):488-499.
50
Palmer JP, Asplin CM, Clemons P, et al. Insulin antibodies in insulindependent diabetics before insulin treatment[J]. Science, 1983,222(4630):1337-1339.
51
Baekkeskov S, Aanstoot HJ, Christgau S, et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase[J]. Nature, 1990,347(6298):151-156.
52
Payton MA, Hawkes CJ, Christie MR. Relationship of the 37,000- and 40,000-M(r) tryptic fragments of islet antigens in insulin-dependent diabetes to the protein tyrosine phosphatase-like molecule IA-2 (ICA512)[J]. J Clin Invest, 1995,96(3):1506-1511.
53
Wenzlau JM, Juhl K, Yu L,et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes[J]. Proc Natl Acad Sci U S A, 2007,104(43):17040-17045.
54
McLaughlin KA, Richardson CC, Ravishankar A, et al. Identification of tetraspanin-7 as a target of autoantibodies in type 1 diabetes[J]. Diabetes, 2016,65(6):1690-1698.
55
Augutis K, Axelsson M, Portelius E, et al. Cerebrospinal fluid biomarkers of b-amyloid metabolism in multiple sclerosis[J]. Mult Scler J, 2012,9(5):543-552.
56
Rosenberg RN. Translational research on the way to effective therapy for Alzheimer disease[J]. Arch Gen Psychiatry, 2005,62:1186-1192.
57
Mayeux R. Epidemiology of neurodegeneration[J]. Annu Rev Neurosci, 2003,26:81-104.
58
Rosenmann H. CSF biomarkers for amyloid and tau pathology in Alzheimer′s disease[J]. J Mol Neurosci, 2012,47(1):1-14.
59
Cohen TJ, Guo JL, Hurtado DE, et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation[J]. Nat Commun, 2011,2:252.
60
Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins[J]. Mol Cell Proteomics, 2006,5(4):573-588.
61
Domanski D, Percy AJ, Yang J, et al. MRM-based multiplexed quantitation of 67 putative cardiovascular disease biomarkers in human plasma[J]. Proteomics, 2012,12(8):1222-1243.
62
Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative [J]. Nat Chem Biol, 2005,1(5):252-262.
63
McAvoy T, Lassman ME, Spellman DS, et al. Quantification of tau in cerebrospinal fluid by immunoaffinity enrichment and tandem mass spectrometry[J]. Clin Chem, 2014,60(4):683-689.
64
Chen Z, Strack AM, Stefanni AC, et al. Validation of human ApoB and ApoAI immunoturbidity assays for non-human primate dyslipidemia and atherosclerosis research[J]. J Cardiovasc Transl Res, 2011,4(3):373-383.
65
Doody RS, Raman R, Farlow M, et al. A phase 3 trial of semagacestat for treatment of Alzheimer′s disease[J]. N Engl J Med, 2013,369(4): 341-350.
66
Coric V, van Dyck CH, Salloway S, et al. Safety and tolerability of the Y-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease[J]. Arch Neurol, 2012,69(11):1430-1440.
67
Barthet G, Georgakopoulos A, Robakis NK. Cellular mechanisms of gamma-secretase substrate selection, processing and toxicity[J]. Prog Neurobiol, 2012,98(2):166-175.
68
Sjödin S, Andersson KA, Mercken M, et al. APLP1 as a cerebrospinal fluid biomarker for γ-secretase modulator treatment[J]. Alzheimer′s Res Ther, 2015,7(1):77.
69
Sun Z, Xie Y, Chen Y, et al. Rab21, a novel PS1 interactor, regulates γ-secretase activity via PS1 subcellular distribution[J]. Mol Neurobiol, 2017[Epub ahead of print].
70
Swardfager W, Lanctot K, Rothenburg L, et al. A meta-analysis of cytokines in Alzheimer′s disease[J]. Biol Psychiatry, 2010,68(10):930-941.
71
Mattsson N, Olsson M, Gustavsson MK, et al. Amyloid-β metabolism in Niemann-Pick C disease models and patients[J]. Metab Brain Dis, 2012, 27(4):573-585.
72
Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD:disrupted RNA and protein homeostasis[J]. Neuron, 2013,79(3):416-438.
73
Li Y, Collins M, An J, et al. Immunoprecipitation and mass spectrometry defines anextensive RBM45 protein-protein interaction network[J]. Brain Res, 2016,647:79-93.
74
Li Y, Collins M, Geiser R, et al. RBM45 homo-oligomerization mediates association with ALS-linked proteins and stress granules [J].Sci, Rep, 2015,5:14262.
75
Nittis T, Guittat L, LeDue RD, et al. Revealing novel telomere proteins using in vivo cross-linking,tandem affinity purification,and label-free quantitative LC-FTICR-MS[J]. Mol Cell Proteom, 2010,9(6):1144-1156.
76
Yassine H, Borges CR, Schaab MR, et al. Mass spectrometric immunoassay and MRM as targeted MS-based quantitative approaches in biomarker development: potential applications to cardiovascular disease and diabetes[J]. Proteomics Clin Appl, 2013,7(7-8):528-540.
77
Gowri MS, Van der Westhuyzen DR, Bridges SR, et al. Decreased protection by HDL from poorly controlled type 2 diabetic subjects against LDL oxidation may Be due to the abnormal composition of HDL[J]. Arterioscler Thromb Vasc Biol, 1999,19(9):2226-2233.
78
Barter PJ, Nicholls S, Rye KA, et al. Antiinflammatory properties of HDL[J]. Circ Res, 2004,95(8):764-772.
79
Panzenbock U, Stocker R. Formation of methionine sulfoxide- containing specific forms of oxidized high-density lipoproteins[J]. Biochim Biophys Acta, 2005,1703(2):171-181.
80
Green PS, Vaisar T, Pennathur S, et al. Combined statin and niacin therapy remodels the high-density lipoprotein proteome[J]. Circulation, 2008,118(12):1259-1267.
81
Navab M, Hama SY, Hough GP, et al. A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. J Lipid Res, 2001,42(8):1308-1317.
82
Malle E, Sodin-Semrl S, Kovacevic A. Serum amyloid A: an acute-phase protein involved in tumour pathogenesis[J]. Cell Mol Life Sci, 2009, 66(1):9-26.
83
Zhao Y, He X, Shi X, et al. Association between serum amyloid A and obesity: a meta-analysis and systematic review[J]. Inflamm Res, 2010, 59(5):323-334.
84
Tolson J, Bogumil R, Brunst E, et al. Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients[J]. Laboratory Investigation, 2004,84 (7):845-856.
85
Tumblin A, Tailor A, Hoehn GT, et al. Apolipoprotein AI and serum amyloid A plasma levels are biomarkers of acute painful episodes in patients with sickle cell disease[J]. Haematologica, 2010,95(9):1467-1472.
86
Yassine HN, Trenchevska O, He H, et al. Serum amyloid a truncations in type 2 diabetes mellitus. PLoS One, 2015;10(1):e0115320.
87
Wang CS, McConathy WJ, Kloer HU, et al. Alaupovic P. Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-Ⅲ[J]. J Clin Investigat,1985,75(2):384-390.
88
Fredenrich A, Giroux L, Tremblay M, et al. Plasma lipoprotein distribution of apoC-Ⅲ in normolipidemic and hypertriglyceridemic subjects: comparison of the apoC-Ⅲ to apoE ratio in different lipoprotein fractions[J]. J Lipid Res, 1997,38(7):1421-1432.
89
Windler E, Havel RJ. Inhibitory effects of C apolipoproteins from rats and humans on the uptake of triglyceride-rich lipoproteins and their remnants by the perfused rat liver[J]. J Lipid Res, 1985,26(5):556-565.
90
Brewer HB Jr, Shulman R, Herbert P, et al. The complete amino acid sequence of alanine apolipoprotein (apoC-Ⅲ), an apolipoprotein from human plasma very low density lipoproteins[J]. J Biol Chem, 1974,249 (15):4975-4984.
91
Vaith P, Assmann G, Uhlenbruck G. Characterization of the oligosaccharide side chain of apolipoprotein C-Ⅲ from human plasma very low density lipoproteins[J]. Biochim Biophys Acta, 1978,541(2): 234-240.
92
Zannis VI, Breslow JL. Genetic mutations affecting human lipoprotein metabolism. Adv Hum Genet. 1985;14:125-215, 383-6.
93
Mann CJ, Troussard AA, Yen FT, et al. Inhibitory effects of specific apolipoprotein C-Ⅲ isoforms on the binding of triglyceride-rich lipoproteins to the lipolysis-stimulated receptor[J]. J Biol chem, 1997,272(50):31348-31354.
94
Holleboom AG, Karlsson H, Lin RS, et al. Heterozygosity for a lossof-function mutation in GALNT2 improves plasma triglyceride clearance in man[J]. Cell Metab, 2011,14(6):811-818.
95
Catapano AL. Activation of lipoprotein lipase by apolipoprotein C-II is modulated by the COOH terminal region of apolipoprotein C-Ⅲ[J]. Chem Phys Lipids, 1987,45(1):39-47.
96
Yassine HN, Trenchevska O, Ramrakhiani A,et al. The association of human apolipoprotein C-III sialylation proteoforms with plasma triglycerides[J]. PLoS One, 2015,10(12):e0144138.
[1] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[2] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[3] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[4] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[5] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[6] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[7] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[8] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[9] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[10] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[11] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[12] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[13] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[14] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[15] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
阅读次数
全文


摘要