切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2017, Vol. 05 ›› Issue (04) : 212 -216. doi: 10.3877/cma.j.issn.2095-5820.2017.04.004

所属专题: 文献

综述

肺癌早期诊断的新肿瘤标志研究
王传新1,()   
  1. 1. 250033 济南,山东大学第二医院检验医学中心
  • 收稿日期:2017-10-19 出版日期:2017-11-28
  • 通信作者: 王传新

Research of new tumor biomarkers for early diagnosis of lung cancer

Chuanxin Wang1,()   

  1. 1. Department of Clinical Laboratory, the Second Hospital of Shandong University, Jinan, 250033, China
  • Received:2017-10-19 Published:2017-11-28
  • Corresponding author: Chuanxin Wang
  • About author:
    Corresponding author: Wang Chuanxin, Email:
引用本文:

王传新. 肺癌早期诊断的新肿瘤标志研究[J/OL]. 中华临床实验室管理电子杂志, 2017, 05(04): 212-216.

Chuanxin Wang. Research of new tumor biomarkers for early diagnosis of lung cancer[J/OL]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2017, 05(04): 212-216.

肺癌是全世界范围内发病率和死亡率最高的恶性肿瘤之一,严重影响人类健康。早期诊断对肺癌治疗和预后至关重要,可显著减少病死率。血清标志在早期肺癌中的异常表达已成为肺癌早期诊断研究领域中最有前景的科学探索。目前,临床常用血清学标志包括癌胚抗原(carcino-embryonic antigen,CEA)、神经元特异性烯醇化酶(neuron-specific enolase,NSE)、细胞角蛋白19片段(cytokeratin 19 fragment,CYFRA21-1)、糖类抗原125(carbohydrate antigen 125,CA125)、胃泌素释放肽前体(pro-gastrin-releasing peptide,Pro-GRP)等。随着分子生物学和高通量技术平台的飞速发展,热休克蛋白90α亚型(heat shock protein 90α,HSP90α)、肺癌自身抗体、循环肿瘤DNA(circulating tumor DNA,ctDNA)、微小RNA(microRNA,miRNA)、循环肿瘤细胞(circulating tumor cells,CTC)等新型标志正不断涌现。本文主要围绕肺癌早期诊断的新肿瘤标志的功能和特点进行阐述。

Lung cancer is one of the most common malignant worldwide, and one of common cause of camcer-related death, the most which seriously human health threaten. Early diagnosis of lung cancer is crucial to the good prognosis lung cancer, which can reduce the fatality rate significantly. Abnormal expression of markers in early lung cancer has become the most promising scientific exploration in the field of early diagnosis. At present, clinical serological markers of lung cancer include carcinoembryonic antigen (CEA), neuron specific enolization enzyme (NSE) and cytokeratin 19 fragment (CYFRA21-1), carbohydrate antigen 125(CA125), and pro-gastrin-releasing peptide(Pro-GRP). With the rapid development of molecular biology and high-throughput technology platform, new biomarkers, such as heat shock protein 90α (HSP90α), autoantibodies, circulating tumor DNA(ctDNA), microRNA(miRNA), and circulating tumor cells (CTC) are emerging. This paper mainly focuses on the functions and characteristics of new tumor biomarkers in the early diagnosis of lung cancer.

1
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017[J]. CA Cancer J Clin, 2017,67(1):7-30.
2
Torre LA, Siegel RL, Jemal A. Lung cancer statistics[J]. Adv Exp Med Biol, 2016,893:1-19.
3
Lim E, Tay A, Von Der Thusen J, et al. Clinical results of microfluidic antibody-independent peripheral blood circulating tumor cell capture for thediagnosis of lung cancer[J]. J Thorac Cardiovasc Surg, 2013, 147(6):1936-1938.
4
Sawabata N. Prognosis of lung cancer patients in Japan according to data from the Japanese Joint Committee of Lung Cancer Registry[J]. Respir Investig, 2014,52(6):317-321.
5
Cho WC. Potentially useful biomarkers for the diagnosis, treatment and prognosis of lung cancer[J]. Biomed Pharmacother, 2007,61(9): 515-519.
6
McGregor HC, Short MA, McWilliams A, et al. Real-time endoscopic Raman spcetroscopy for in vivo early lung cancer detection[J]. Biophotonics, 2017,10(1):98-100.
7
Kumar N, Shahjaman M, Mollah MNH, et al. Serum and plasma metabolomic biomarkers for lung cancer[J]. Bioinformation, 2017,13(6):202-208.
8
Liu L, Teng J, Zhang L,et al. The Combination of the tumor markers suggests the histological diagnosis of lung cancer[J]. Biomed Res Int, 2017,2017:2013989.
9
Wang W, Xu X, Tian B, et al. The diagnostic value of serum tumor markers CEA, CA19-9, CA125, CA15-3, and TPS in metastatic breast cancer[J]. Clin Chim Acta, 2017,470:51-55.
10
Cho JY, Sung HJ. Proteomic approaches in lung cancer biomarker development[J]. Expert Rev Proteomics, 2009,6(1):27-42.
11
Takeuchi A, Oguri T, Sone K, et al. Predictive and prognostic value of CYFRA 21-1 for advanced non-small cell lung cancer treated with EGFR-TKIs[J]. Anticancer Res, 2017,37(10):5771-5776.
12
Zhang S, Zhao YF, Zhang MZ, et al. The diagnostic value of tumor markers in bronchoalveolar lavage fluid for the peripheral pulmonary carcinoma[J]. Clin Respir J, 2017,11(4):481-488.
13
Dong HM, Le YQ, Wang YH, et al. Extracellular heat shock protein 90α mediates HDM-induced bronchial epithelial barrier dysfunction by activating RhoA/MLC signaling[J]. Respir Res, 2017,18(1):111.
14
Shi Y, Liu X, Lou J, et al. Plasma levels of heat shock protein 90 alpha associated with lung cancer development and treatment responses[J]. Clin Cancer Res, 2014,20(23):6016-6022.
15
Kobayashi M, Nagashio R, Ryuge S, et al. Acquisition of useful sero-diagnostic autoantibodies using the same patientssera and tumor tissues[J]. Biomed Res, 2014,35(2):133-143.
16
Macdonald IK, Parsy-Kowalska CB, Chapman CJ. Autoantibodies: opportunities for early cancer detection[J]. Trends Cancer, 2017, 3(3):198-213.
17
Broodman I, Lindemans J, van Sten J, et al. Serum protein markers for the early detection of lung cancer: a focus on autoantibodies[J]. J Proteome Res, 2017,16(1):3-13.
18
Chapman CJ, Murray A, McElveen JE, et al. Autoantibodies in lung cancer: possibilities for early detection and subsequent cure[J]. Thorax, 2008,63(3):228-233.
19
Boyle P, Chapman CJ, Holdenrieder S, et al. Clinical validation of an autoantibody test for lung cancer[J].Ann Oncol, 2011,22(2): 383-389.
20
Chapman CJ, Healey GF, Murray A, et al. EarlyCDT®-Lung test: improved clinical utility through additional autoantibody assays[J]. Tumour Biol, 2012,33(5):1319-1326.
21
Jett JR, Peek LJ, Fredericks L, et al. Audit of the autoantibody test, EarlyCDT®-lung, in 1600 patients: an evaluation of its performance in routine clinical practice[J]. Lung Cancer, 2014,83(1):51-55.
22
Sullivan FM, Farmer E, Mair FS, et al. Detection in blood of autoantibodies to tumour antigens as a case-finding method in lung cancer using the EarlyCDT®-Lung Test (ECLS): study protocol for a randomized controlled trial[J]. BMC Cancer, 2017,17(1):187.
23
Massion PP, Healey GF, Peek LJ,et al. Autoantibody signature enhances the positive predictive power of computed tomography and nodule-based risk models for detection of lung cancer[J]. J Thorac Oncol, 2017,12(3):578-584.
24
Jia S, Zhang R, Li Z,et al. Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer[J]. Oncotarget, 2017,8(33):55632-55645.
25
Cheng F, Su L, Qian C. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer[J]. Oncotarget, 2016,7(30):48832-48841.
26
Li M, Diehl F, Dressman D, et al. BEAMing up for detection and quantifcation of rare sequence variants[J]. Nat Methods, 2006,3(2): 95-97.
27
Reinert T, Schøler LV, Thomsen R, et al. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery[J]. Gut, 2016,65(4):625-634.
28
Chen KZ, Lou F, Yang F, et al. Circulating tumor DNA detection in early-stage non-small cell lung cancer patients by targeted sequencing[J]. Sci Rep, 2016,6:31985.
29
Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNAwith broad patient coverage[J]. Nat Med, 2014,20(5):548-554.
30
Mishra PJ. MicroRNAs as promising biomarkers in cancer diagnostics[J]. Biomark Res, 2014,22(2):19.
31
Świtlik WZ, Szemraj J. Circulating miRNAs as non-invasive biomarkers for non-small cell lung cancer diagnosis, prognosis and prediction of treatment response[J]. Postepy Hig Med Dosw (Online), 2017,71:649-662.
32
Geng Q, Fan T, Zhang B et al. Five microRNAs in plasma as novel biomarkers for screening of early-stage non-small cell lung cancer[J]. Respir Res, 2014,25(15):149.
33
Heegaard NH, Schetter AJ, Welsh JA, et al. Circulating microRNA expression profiles in early stage nonsmall cell lung cancer[J]. Int J Cancer, 2012,130(6):1378-1386.
34
Foss KM, Sima C, Ugolini D, et al. miR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung cancer[J]. J Thorac Oncol, 2011,6(3):482-488.
35
Shen J, Liu Z, Todd NW, et al. Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers[J]. BMC Cancer, 2011,24(11):374.
36
Carter L, Rothwell DG, Mesquita B,et al. Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer[J]. Nat Med, 2017,23(1):114-119.
37
Hofman V, Bonnetaud C, llie MI, et al. Preoperative circulating tumor cell detection using the isolation by size of epithelial tumor cell method for patients with lung cancer is a new prognostic biomarker[J]. Clin Cancer Res, 2011,17(4):827-835.
38
Sleijfer S, Gratama JW, Sieuwei′ts AM,et al.Circulating tumor cell detection on its way to routine diagnostic implementation[J]. Eur J Cancer, 2007,43(18):2645-2650.
39
He W, Wang H, Hartmann LC, et al. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry[J]. Proc Nat Acad Sci U S A, 2007,104(28):11760-11765.
40
Tanaka F, Yoneda K, Kondo N, et al. Circulating tumor cell as a diagnostic marker in primary lung cancer[J]. Clin Cancer Res, 2009, 15(22):6980-6986.
41
Carlsson A, Nair VS, Luttgen MS, et al. Circulating tumor microemboli diagnostics for patients with non-small-cell lung cancer[J]. J Thorac Oncol, 2014,9(8):1111-1119.
42
Ilie M, Hofman V, Long-Mira E,et al. ″Sentinel″ circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease[J]. PLoS One, 2014,9(10):e111597.
[1] 杨轲, 丁增巴姆, 马静, 李盼盼, 陈婷. 全程无缝隙肺康复训练在单孔胸腔镜肺叶切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 801-804.
[2] 张礼江, 沈玲佳, 施我大. 倾向性评分匹配分析奥希替尼对晚期NSCLC 预后的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 820-822.
[3] 钱春蕊, 周燕, 张晶, 蔡笃财, 门慧, 王松海, 黎莉, 邢龙. 高分辨率CT 与多层螺旋CT 在肺结节及早期肺癌中的应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 827-830.
[4] 袁延丽, 屈卓军, 崔会慧, 王菁, 高贝贝, 潘院. 原发性肺癌切除术后谵妄的危险因素及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 701-706.
[5] 井发红, 李丽娜, 高婷, 高艳梅, 杨楠, 李卓, 慕玉东. 肺癌立体定向放疗血清SAP 和MMPs 表达及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 707-713.
[6] 邢嘉翌, 龚佳晟, 祝佳佳, 陆群. 肺癌化疗患者继发肺部感染的病原菌耐药性及炎症因子变化分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 714-718.
[7] 杨慧, 郭丽娟, 冯晓丹, 李静, 黄成谋, 蔡兴锐, 覃英娇, 王远礼. 非小细胞肺癌铂类药物耐药mi RNA表达特征及预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 719-724.
[8] 张卫锋, 张天翼, 赵正维, 王海强, 尹逊亮. VE /VCO2 斜率对肺癌肺叶切除术后心血管并发症的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 725-730.
[9] 赖淼, 景鑫, 李桂珍, 李怡. 非小细胞肺癌EGFR 突变亚型的临床病理和预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 731-737.
[10] 梁丽斯, 李洁, 贺帅, 来艳君, 刘铭, 张琳. MMP-9、MMP-2 及TLR4、HE4对非小细胞肺癌早期诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 756-761.
[11] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[12] 张桂萍, 丘勇林, 湛绮婷, 孙乐栋. 晚期非小细胞肺癌血清Ape1/Ref-1对放射性肺损伤发生的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 519-523.
[13] 刘一鸣, 温佳新, 赵恺, 薛志强. ⅢA 期肺腺癌新辅助治疗后胸腔镜右肺中下叶切除术[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 311-313.
[14] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[15] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
阅读次数
全文


摘要