切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2017, Vol. 05 ›› Issue (04) : 212 -216. doi: 10.3877/cma.j.issn.2095-5820.2017.04.004

所属专题: 文献

综述

肺癌早期诊断的新肿瘤标志研究
王传新1,()   
  1. 1. 250033 济南,山东大学第二医院检验医学中心
  • 收稿日期:2017-10-19 出版日期:2017-11-28
  • 通信作者: 王传新

Research of new tumor biomarkers for early diagnosis of lung cancer

Chuanxin Wang1,()   

  1. 1. Department of Clinical Laboratory, the Second Hospital of Shandong University, Jinan, 250033, China
  • Received:2017-10-19 Published:2017-11-28
  • Corresponding author: Chuanxin Wang
  • About author:
    Corresponding author: Wang Chuanxin, Email:
引用本文:

王传新. 肺癌早期诊断的新肿瘤标志研究[J]. 中华临床实验室管理电子杂志, 2017, 05(04): 212-216.

Chuanxin Wang. Research of new tumor biomarkers for early diagnosis of lung cancer[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2017, 05(04): 212-216.

肺癌是全世界范围内发病率和死亡率最高的恶性肿瘤之一,严重影响人类健康。早期诊断对肺癌治疗和预后至关重要,可显著减少病死率。血清标志在早期肺癌中的异常表达已成为肺癌早期诊断研究领域中最有前景的科学探索。目前,临床常用血清学标志包括癌胚抗原(carcino-embryonic antigen,CEA)、神经元特异性烯醇化酶(neuron-specific enolase,NSE)、细胞角蛋白19片段(cytokeratin 19 fragment,CYFRA21-1)、糖类抗原125(carbohydrate antigen 125,CA125)、胃泌素释放肽前体(pro-gastrin-releasing peptide,Pro-GRP)等。随着分子生物学和高通量技术平台的飞速发展,热休克蛋白90α亚型(heat shock protein 90α,HSP90α)、肺癌自身抗体、循环肿瘤DNA(circulating tumor DNA,ctDNA)、微小RNA(microRNA,miRNA)、循环肿瘤细胞(circulating tumor cells,CTC)等新型标志正不断涌现。本文主要围绕肺癌早期诊断的新肿瘤标志的功能和特点进行阐述。

Lung cancer is one of the most common malignant worldwide, and one of common cause of camcer-related death, the most which seriously human health threaten. Early diagnosis of lung cancer is crucial to the good prognosis lung cancer, which can reduce the fatality rate significantly. Abnormal expression of markers in early lung cancer has become the most promising scientific exploration in the field of early diagnosis. At present, clinical serological markers of lung cancer include carcinoembryonic antigen (CEA), neuron specific enolization enzyme (NSE) and cytokeratin 19 fragment (CYFRA21-1), carbohydrate antigen 125(CA125), and pro-gastrin-releasing peptide(Pro-GRP). With the rapid development of molecular biology and high-throughput technology platform, new biomarkers, such as heat shock protein 90α (HSP90α), autoantibodies, circulating tumor DNA(ctDNA), microRNA(miRNA), and circulating tumor cells (CTC) are emerging. This paper mainly focuses on the functions and characteristics of new tumor biomarkers in the early diagnosis of lung cancer.

1
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017[J]. CA Cancer J Clin, 2017,67(1):7-30.
2
Torre LA, Siegel RL, Jemal A. Lung cancer statistics[J]. Adv Exp Med Biol, 2016,893:1-19.
3
Lim E, Tay A, Von Der Thusen J, et al. Clinical results of microfluidic antibody-independent peripheral blood circulating tumor cell capture for thediagnosis of lung cancer[J]. J Thorac Cardiovasc Surg, 2013, 147(6):1936-1938.
4
Sawabata N. Prognosis of lung cancer patients in Japan according to data from the Japanese Joint Committee of Lung Cancer Registry[J]. Respir Investig, 2014,52(6):317-321.
5
Cho WC. Potentially useful biomarkers for the diagnosis, treatment and prognosis of lung cancer[J]. Biomed Pharmacother, 2007,61(9): 515-519.
6
McGregor HC, Short MA, McWilliams A, et al. Real-time endoscopic Raman spcetroscopy for in vivo early lung cancer detection[J]. Biophotonics, 2017,10(1):98-100.
7
Kumar N, Shahjaman M, Mollah MNH, et al. Serum and plasma metabolomic biomarkers for lung cancer[J]. Bioinformation, 2017,13(6):202-208.
8
Liu L, Teng J, Zhang L,et al. The Combination of the tumor markers suggests the histological diagnosis of lung cancer[J]. Biomed Res Int, 2017,2017:2013989.
9
Wang W, Xu X, Tian B, et al. The diagnostic value of serum tumor markers CEA, CA19-9, CA125, CA15-3, and TPS in metastatic breast cancer[J]. Clin Chim Acta, 2017,470:51-55.
10
Cho JY, Sung HJ. Proteomic approaches in lung cancer biomarker development[J]. Expert Rev Proteomics, 2009,6(1):27-42.
11
Takeuchi A, Oguri T, Sone K, et al. Predictive and prognostic value of CYFRA 21-1 for advanced non-small cell lung cancer treated with EGFR-TKIs[J]. Anticancer Res, 2017,37(10):5771-5776.
12
Zhang S, Zhao YF, Zhang MZ, et al. The diagnostic value of tumor markers in bronchoalveolar lavage fluid for the peripheral pulmonary carcinoma[J]. Clin Respir J, 2017,11(4):481-488.
13
Dong HM, Le YQ, Wang YH, et al. Extracellular heat shock protein 90α mediates HDM-induced bronchial epithelial barrier dysfunction by activating RhoA/MLC signaling[J]. Respir Res, 2017,18(1):111.
14
Shi Y, Liu X, Lou J, et al. Plasma levels of heat shock protein 90 alpha associated with lung cancer development and treatment responses[J]. Clin Cancer Res, 2014,20(23):6016-6022.
15
Kobayashi M, Nagashio R, Ryuge S, et al. Acquisition of useful sero-diagnostic autoantibodies using the same patientssera and tumor tissues[J]. Biomed Res, 2014,35(2):133-143.
16
Macdonald IK, Parsy-Kowalska CB, Chapman CJ. Autoantibodies: opportunities for early cancer detection[J]. Trends Cancer, 2017, 3(3):198-213.
17
Broodman I, Lindemans J, van Sten J, et al. Serum protein markers for the early detection of lung cancer: a focus on autoantibodies[J]. J Proteome Res, 2017,16(1):3-13.
18
Chapman CJ, Murray A, McElveen JE, et al. Autoantibodies in lung cancer: possibilities for early detection and subsequent cure[J]. Thorax, 2008,63(3):228-233.
19
Boyle P, Chapman CJ, Holdenrieder S, et al. Clinical validation of an autoantibody test for lung cancer[J].Ann Oncol, 2011,22(2): 383-389.
20
Chapman CJ, Healey GF, Murray A, et al. EarlyCDT®-Lung test: improved clinical utility through additional autoantibody assays[J]. Tumour Biol, 2012,33(5):1319-1326.
21
Jett JR, Peek LJ, Fredericks L, et al. Audit of the autoantibody test, EarlyCDT®-lung, in 1600 patients: an evaluation of its performance in routine clinical practice[J]. Lung Cancer, 2014,83(1):51-55.
22
Sullivan FM, Farmer E, Mair FS, et al. Detection in blood of autoantibodies to tumour antigens as a case-finding method in lung cancer using the EarlyCDT®-Lung Test (ECLS): study protocol for a randomized controlled trial[J]. BMC Cancer, 2017,17(1):187.
23
Massion PP, Healey GF, Peek LJ,et al. Autoantibody signature enhances the positive predictive power of computed tomography and nodule-based risk models for detection of lung cancer[J]. J Thorac Oncol, 2017,12(3):578-584.
24
Jia S, Zhang R, Li Z,et al. Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer[J]. Oncotarget, 2017,8(33):55632-55645.
25
Cheng F, Su L, Qian C. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer[J]. Oncotarget, 2016,7(30):48832-48841.
26
Li M, Diehl F, Dressman D, et al. BEAMing up for detection and quantifcation of rare sequence variants[J]. Nat Methods, 2006,3(2): 95-97.
27
Reinert T, Schøler LV, Thomsen R, et al. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery[J]. Gut, 2016,65(4):625-634.
28
Chen KZ, Lou F, Yang F, et al. Circulating tumor DNA detection in early-stage non-small cell lung cancer patients by targeted sequencing[J]. Sci Rep, 2016,6:31985.
29
Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNAwith broad patient coverage[J]. Nat Med, 2014,20(5):548-554.
30
Mishra PJ. MicroRNAs as promising biomarkers in cancer diagnostics[J]. Biomark Res, 2014,22(2):19.
31
Świtlik WZ, Szemraj J. Circulating miRNAs as non-invasive biomarkers for non-small cell lung cancer diagnosis, prognosis and prediction of treatment response[J]. Postepy Hig Med Dosw (Online), 2017,71:649-662.
32
Geng Q, Fan T, Zhang B et al. Five microRNAs in plasma as novel biomarkers for screening of early-stage non-small cell lung cancer[J]. Respir Res, 2014,25(15):149.
33
Heegaard NH, Schetter AJ, Welsh JA, et al. Circulating microRNA expression profiles in early stage nonsmall cell lung cancer[J]. Int J Cancer, 2012,130(6):1378-1386.
34
Foss KM, Sima C, Ugolini D, et al. miR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung cancer[J]. J Thorac Oncol, 2011,6(3):482-488.
35
Shen J, Liu Z, Todd NW, et al. Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers[J]. BMC Cancer, 2011,24(11):374.
36
Carter L, Rothwell DG, Mesquita B,et al. Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer[J]. Nat Med, 2017,23(1):114-119.
37
Hofman V, Bonnetaud C, llie MI, et al. Preoperative circulating tumor cell detection using the isolation by size of epithelial tumor cell method for patients with lung cancer is a new prognostic biomarker[J]. Clin Cancer Res, 2011,17(4):827-835.
38
Sleijfer S, Gratama JW, Sieuwei′ts AM,et al.Circulating tumor cell detection on its way to routine diagnostic implementation[J]. Eur J Cancer, 2007,43(18):2645-2650.
39
He W, Wang H, Hartmann LC, et al. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry[J]. Proc Nat Acad Sci U S A, 2007,104(28):11760-11765.
40
Tanaka F, Yoneda K, Kondo N, et al. Circulating tumor cell as a diagnostic marker in primary lung cancer[J]. Clin Cancer Res, 2009, 15(22):6980-6986.
41
Carlsson A, Nair VS, Luttgen MS, et al. Circulating tumor microemboli diagnostics for patients with non-small-cell lung cancer[J]. J Thorac Oncol, 2014,9(8):1111-1119.
42
Ilie M, Hofman V, Long-Mira E,et al. ″Sentinel″ circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease[J]. PLoS One, 2014,9(10):e111597.
[1] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[2] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[3] 梁开地, 缑文斌, 莫居容. 肺癌组织中细胞角蛋白18的表达及与预后的相关性[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 688-690.
[4] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[5] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[6] 朱超男, 王帅, 王文博, 郑贸根, 程远, 陈志全. 非小细胞肺癌患者组织miR-31-5p表达与临床病理特征及预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 508-510.
[7] 徐天亮, 程干思, 吴亚平, 龚荣, 胡洁, 段群娣, 李承慧. 奥希替尼联合安罗替尼二线治疗转移性NSCLC的疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 520-522.
[8] 赵超, 张乾. SAPB和TPVB在腔镜下肺癌根治术中的应用及镇痛效果分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 535-537.
[9] 蒙姣姣, 胡刚, 欧阳涣堃. 肺癌术前淋巴结转移及MWA手术效果预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 547-549.
[10] 宁晓矿, 郝普明, 闫睿, 刘云泽, 李宬润. 单向式三孔胸腔镜肺叶切除术治疗早期肺癌应用研究[J]. 中华腔镜外科杂志(电子版), 2023, 16(04): 227-232.
[11] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[12] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[13] 熊亚琼, 田文泽, 冷雪春, 尤振兵, 韦欣琪. 集束化干预在肺癌术后顽固性咳嗽中的应用[J]. 中华胸部外科电子杂志, 2023, 10(04): 207-212.
[14] 陈立如, 刘亮, 彭雷, 徐全, 章晔. 单孔胸腔镜左肺下叶袖式切除术:新辅助免疫化疗后手术[J]. 中华胸部外科电子杂志, 2023, 10(04): 228-233.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要