切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2018, Vol. 06 ›› Issue (01) : 10 -14. doi: 10.3877/cma.j.issn.2095-5820.2018.01.004

所属专题: 文献

专题笔谈

肠道微生态研究技术在代谢综合征中的应用
曹会玲1, 吴尚为2,()   
  1. 1. 300203 天津医科大学检验学院
    2. 300203 天津医科大学检验学院;300100 天津市南开医院
  • 收稿日期:2017-09-11 出版日期:2018-02-28
  • 通信作者: 吴尚为

Application of the technology of gut microbial ecology in the metabolic syndrome

Huiling Cao1, Shangwei Wu2,()   

  1. 1. School of Laboratory Medicine, Tianjin Medical University, Tianjin 300203, China
    2. School of Laboratory Medicine, Tianjin Medical University, Tianjin 300203, China; Tianjin Nankai Hospital, Tianjin 300100, China
  • Received:2017-09-11 Published:2018-02-28
  • Corresponding author: Shangwei Wu
  • About author:
    Corresponding authors: Wu Shangwei, Email:
引用本文:

曹会玲, 吴尚为. 肠道微生态研究技术在代谢综合征中的应用[J]. 中华临床实验室管理电子杂志, 2018, 06(01): 10-14.

Huiling Cao, Shangwei Wu. Application of the technology of gut microbial ecology in the metabolic syndrome[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2018, 06(01): 10-14.

哺乳动物肠道内定居着数量庞大且组分复杂的微生物群,它们共同构成了肠道微生物组。近年来,人们逐渐认识到肠道微生物与一些疾病的发生和发展密切相关,如代谢性疾病、炎症性肠病、肿瘤、免疫系统以及神经系统疾病等,使得肠道微生物成为研究的热点。迅猛发展的微生物研究技术为我们提供了高效有力的技术平台,推动了对肠道微生态的系统认知,也为疾病的诊断及治疗开辟了新思路。本文旨在总结与分析目前常用微生态研究技术的最新进展及其局限性,为进一步的肠道微生物组研究提供参考,并简要介绍肠道微生态与代谢综合征的相关研究成果。

The intestinal tract of mammals has a large number of complex microbial flora, which together forms the intestinal microbiome. In recent years, it has been realized that intestinal microbes are closely related to the occurrence and development of some diseases, such as metabolic syndrome, inflammatory bowel disease, cancer, immune system and nervous system disease and so on, which makes intestinal microbiome to be one of the most active research fields. The rapid development of microbial research technologies provides us with efficient and powerful methodology and promotes the systematic understanding of intestinal micro-ecology, and opens up new ideas for the diagnosis and treatment of diseases.. This review aims to summarize and analyze the latest progress and limitation of micro-ecological research techniques, providing a reference for further study of gut microbiota, and simply introduce the representative results of the study on the correlation between micro-ecology and metabolic syndrome in intestinal tract.

1
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomicsequencing[J]. Nature, 2010,464(7285):59-65.
2
Chassard C, Lacroix C. Carbohydrates and the human gut microbiota[J]. Curr Opin Clin Nutr Metab Care, 2013,16(4):453-460.
3
Bengmark S. Gut microbial ecology in critical illness: is there a role for prebiotics, probiotics, and synbiotics[J]? Curr Opin Crit Care, 2002,8(2):145-151.
4
Kabat AM, Srinivasan N, Maloy KJ. Modulation of immune development and function by intestinal microbiota[J]. Trends Immunol, 2014,35(11):507-517.
5
Gensollen T, Iyer SS, Kasper DL, et al. How colonization by microbiota in early life shapes the immune system[J]. Science, 2016,352(6285):539-544.
6
Flint HJ, Duncan SH, Scott KP, et al. Interactions and competition within the microbial community of the human colon: links between diet and health[J]. Environ Microbiol, 2007,9(5):1101-1111.
7
Liu DQ, Gao QY, Liu HB, et al. Probiotics improve survival of septic rats by suppressing conditioned pathogens in ascites[J]. World J Gastroenterol, 2013,19(25):4053-4059.
8
Vartoukian SR, Palmer RM, Wade WG. Strategies for culture of ′unculturable′ bacteria[J]. FEMS Microbiol Lett, 2010,309(1):1-7.
9
Claesson MJ, Wang Q, O′Sullivan O, et al. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions[J]. Nucleic Acids Res, 2010,38(22):e200.
10
Hiergeist A, Reischl U, Gessner A. Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability[J]. Int J Med Microbiol, 2016,306(5):334-342.
11
Turnbaugh PJ, Quince C, Faith JJ, et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins[J]. Proc Nati Acad Sci U S A, 2010,107(16):7503-7508.
12
Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease[J]. Proc Nati Acad Sci U S A, 2012,109(2):594-599.
13
Schloissnig S, Arumugam M, Sunagawa S, et al. Genomic variation landscape of the human gut microbiome[J]. Nature, 2013,493(7430):45-50.
14
Tolonen AC, Xavier RJ. Dissecting the human microbiome with single-cell genomics[J]. Genome Med, 2017,9(1):56.
15
Rinke C, Schwientek P, Sczyrba A, et al. Insights into the phylogeny and coding potential of microbial dark matter[J]. Nature, 2013,499(7459):431-437.
16
Woyke T, Xie G, Copeland A, et al. Assembling the marine metagenome, one cell at a time[J]. PloS One, 2009,4(4):e5299.
17
Marcy Y, Ouverney C, Bik EM, et al. Dissecting biological ″dark matter″ with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth[J]. Proc Nati Acad Sci U S A, 2007,104(29):11889-11894.
18
Lagier JC, Armougom F, Million M, et al. Microbial culturomics: paradigm shift in the human gut microbiome study[J]. Clin Microbiol Infect, 2012,18(12):1185-1193.
19
Lagier JC, Khelaifia S, Alou MT, et al. Culture of previously uncultured members of the human gut microbiota by culturomics[J]. Nat Microbiol, 2016,1:16203.
20
Lagkouvardos I, Overmann J, Clavel T. Cultured microbes represent a substantial fraction of the human and mouse gut microbiota[J]. Gut Microbes, 2017,8(5):493-503.
21
Kaur J. A comprehensive review on metabolic syndrome[J]. Cardiol Res Pract, 2014,2014:943162.
22
Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Nati Acad Sci U S A, 2004,101(44):15718-15723.
23
Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006,444(7122):1027-1031.
24
Di Luccia B, Crescenzo R, Mazzoli A, et al. Rescue of fructose-induced metabolic syndrome by antibiotics or faecaltransplantation in a rat model of obesity[J]. PloS One, 2015,10(8):e0134893.
25
Guo X, Xia X, Tang R, et al. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs[J]. Lett Appl Microbiol, 2008,47(5):367-373.
26
Jumpertz R, Le DS, Turnbaugh PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans[J]. Am J Clin Nutr, 2011,94(1):58-65.
27
Schwiertz A, Taras D, Schäfer K, et al. Microbiota and SCFA in lean and overweight healthy subjects[J]. Obesity (Silver Spring), 2010,18(1):190-195.
28
Santacruz A, Collado MC, García-Valdés L, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women[J]. Br J Nutr, 2010,104(1):83-92.
29
Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity[J]. Nature, 2016,535(7612):376-381.
30
Li J, Lin S, Vanhoutte PM, et al. AkkermansiaMuciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe-/- Mice[J]. Circulation, 2016,133(24):2434-2446.
31
Kang JH, Yun SI, Park MH, et al. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice[J]. PloS One, 2013,8(1):e54617.
32
Zhou AL, Hergert N, Rompato G, et al. Whole grain oats improve insulin sensitivity and plasma cholesterol profile and modify gut microbiota composition in C57BL/6J mice[J]. J Nutr, 2015,145(2):222-230.
33
Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults[J]. Aliment Pharmacol Ther, 2011,34(3):274-285.
34
Compare D, Coccoli P, Rocco A, et al. Gut--liver axis: the impact of gut microbiota on non alcoholic fatty liver disease[J]. Nutr Metab Cardiovasc Dis, 2012,22(6):471-476.
35
Le RT, Llopis M, Lepage P, et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice[J]. Gut, 2013,62(12):1787-1794.
36
Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH[J]. Hepatology, 2013,57(2):601-609.
37
Grat M, Wronka KM, Krasnodebski M, et al. Profile of gut microbiota associated with the presence of hepatocellular cancer in patients with liver cirrhosis[J]. Transplantat Proc, 2016,48(5):1687-1691.
[1] 朱仔燕, 薛松, 马金忠. 单细胞测序技术在骨关节炎病因诊断中的研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(01): 44-48.
[2] 王超, 包训迪, 徐东芳, 王庆. 实时荧光核酸恒温扩增技术、GeneXpert和BACTEC MGIT960液体快速培养法对涂阴肺结核的诊断效能[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 41-47.
[3] 郑希彦, 周正, 何方平, 林志群, 杜飞, 谢琴, 王少平, 史宪杰. 代谢综合征与乙型肝炎病毒相关性肝细胞癌预后的危险因素分析[J]. 中华普通外科学文献(电子版), 2023, 17(02): 104-109.
[4] 刘志威, 赵利婷, 余志荣, 陈友鹏. 代谢综合征对结直肠管状绒毛状腺瘤的影响因素分析[J]. 中华消化病与影像杂志(电子版), 2022, 12(04): 215-219.
[5] 朱国英, 陈利, 丁永年, 杨长青, 朱风尚. 重视脂肪胰的基础和临床研究[J]. 中华消化病与影像杂志(电子版), 2022, 12(03): 129-132.
[6] 许莹, 马霄虹, 赵心明. 非酒精性脂肪性胰腺疾病的研究进展[J]. 中华消化病与影像杂志(电子版), 2022, 12(01): 46-51.
[7] 李甜, 蔡晓月, 王娟, 周巍, 赵英强. 基于肠道菌群的中医药干预高血压病研究进展[J]. 中华针灸电子杂志, 2022, 11(04): 149-152.
[8] 邓秀丽, 时娟, 麦麦提艾力, 蒋媛, 王俭. 腹腔镜胃底折叠术联合袖状胃切除术治疗肥胖合并胃食管反流病患者围手术期的护理体会[J]. 中华胃食管反流病电子杂志, 2021, 08(03): 160-162.
[9] 晋连超, 杨冰, 周哲, 潘东亮, 谢遵珂. 代谢综合征与女性压力性尿失禁相关性研究[J]. 中华肥胖与代谢病电子杂志, 2023, 09(02): 109-113.
[10] 刘仕锦, 张怡然, 丁晖, 赵晓旭, 潘运龙. 代谢综合征与端粒状态对结直肠癌患者预后的影响[J]. 中华肥胖与代谢病电子杂志, 2022, 08(04): 231-235.
[11] 骆辉珍, 叶伟雄, 蔡绪伟, 杜宝文. 肥胖儿童阻塞性睡眠呼吸暂停低通气综合征对生长发育和代谢指标的影响[J]. 中华肥胖与代谢病电子杂志, 2022, 08(03): 164-168.
[12] 毕新宇, 肖金凤, 朱崇贵, 孙龙昊, 崔瑾, 何庆, 梁晓宇. 减重手术患者术前垂体核磁检查及相关激素水平分析[J]. 中华肥胖与代谢病电子杂志, 2022, 08(03): 159-163.
[13] 韩晓凯, 李涛, 薛涵月, 康建省. 不规范开腹胃旁路术后修正手术两例[J]. 中华肥胖与代谢病电子杂志, 2021, 07(03): 207-210.
[14] 吐洪卡热·牙生, 关炳生, 肖永彪, 杨景哥. 代谢综合征与结直肠癌相关性研究进展[J]. 中华肥胖与代谢病电子杂志, 2021, 07(03): 199-202.
[15] 韩仲慧, 王存川, 高丽莲, 卿鹏, 林清然, 杨华, 中国肥胖代谢外科研究协作组. 中医技术配合运动饮食治疗肥胖症与代谢综合征研究进展[J]. 中华肥胖与代谢病电子杂志, 2021, 07(02): 121-125.
阅读次数
全文


摘要