切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2019, Vol. 07 ›› Issue (01) : 35 -39. doi: 10.3877/cma.j.issn.2095-5820.2019.01.009

所属专题: 文献

实验研究

硝酸镓联合抗菌药物抑制洋葱伯克霍尔德菌生物膜形成的研究
茅国峰1,(), 王瑶琴1   
  1. 1. 312000,绍兴市人民医院检验科
  • 收稿日期:2018-01-29 出版日期:2019-02-28
  • 通信作者: 茅国峰
  • 基金资助:
    浙江省医药卫生研究面上项目(2018KY826)

Study of the inhibitory effect of gallium nitrate combined with antimicrobial agents on biofilm formation of Burkholderia cepacia

Guofeng Mao1,(), Yaoqin Wang1   

  1. 1. Department of Clinical Laboratory, Shaoxing People′s Hospital, Shaoxing 312000, China
  • Received:2018-01-29 Published:2019-02-28
  • Corresponding author: Guofeng Mao
  • About author:
    Corresponding author: Mao Guofeng, Email:
引用本文:

茅国峰, 王瑶琴. 硝酸镓联合抗菌药物抑制洋葱伯克霍尔德菌生物膜形成的研究[J/OL]. 中华临床实验室管理电子杂志, 2019, 07(01): 35-39.

Guofeng Mao, Yaoqin Wang. Study of the inhibitory effect of gallium nitrate combined with antimicrobial agents on biofilm formation of Burkholderia cepacia[J/OL]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2019, 07(01): 35-39.

目的

研究硝酸镓单用及联合头孢他啶或(和)美罗培南对洋葱伯克霍尔德菌生物膜形成的抑制作用。

方法

收集2017年1月至12月临床分离到的34株洋葱伯克霍尔德菌,微量肉汤稀释法检测其对硝酸镓及头孢他啶、复方磺胺甲恶唑、左氧氟沙星、哌拉西林/他唑巴坦、替加环素、美罗培南、氯霉素、米诺环素、头孢哌酮/舒巴坦9种抗菌药物的最低抑菌浓度(minimal inhibitory concentration,MIC)。结晶紫染色法定性、定量分析生物膜形成能力,比较不同生物膜形成能力菌株对硝酸镓及这9种抗菌药物的敏感性。将1.0×MIC的硝酸镓和头孢他啶、美罗培南单独应用及联合使用,检测其对洋葱伯克霍尔德生物膜的抑制率。

结果

培养48小时34株细菌均能形成稳定的生物膜。其中(弱)阳性10株,占29.4%;强阳性24株,占70.6%,生物膜(弱)阳性和强阳性菌株对头孢哌酮舒巴坦的耐药率差异具有统计学意义。加入硝酸镓前后菌株的生物膜形成光密度(optical density, OD)值、硝酸镓单用与联合头孢他啶后的OD值差异均具有统计学意义,但硝酸镓单用与联合美罗培南后的OD值差异无统计学意义。

结论

洋葱伯克霍尔德菌具有较强的生物膜形成能力,硝酸镓单用及联合头孢他啶对菌株生物膜形成具有明显抑制作用。

Objective

To study the inhibitory effects of gallium nitrate alone and combined with ceftazidime or meropenem on biofilm formation of Burkholderia cepacia.

Methods

Thirty-four strains of Burkholderia cepacia were isolated from January to December 2017. The minimal inhibitory concentration (MIC) of Burkholderia cepacia to gallium nitrate, ceftazidime, compound sulfamethoxazole, levofloxacin, piperacillin/tazobactam, tegacycline, meropenem, chloramphenicol, minocycline and cefoperazone/sulbactam were detected by broth dilution method. Crystal violet staining was used to quantitatively and qualitatively analyze the ability of biofilm formation of, Burkholderia cepacia and to compare the sensitivity of those strains with different ability of biofilm formation to gallium nitrate and the nine antimicrobial agents. The effects of gallium nitrate and ceftazidime and meropenem on biofilm formation were evaluated separately or jointly at 1.0×MIC.

Results

All the 34 strains could form stable biofilms after 48 hours culture. Among them, 10 were weak postive (29.4%) and 24 were strong positive (70.6%). There was a significant difference in the resistant rate of cefoperazone and sulbactam between the weak and strong positive strains with biofilm. There were significant differences in optical density (OD) values of biofilm formed by the strains before and after treated with gallium nitrate alone or combined with ceftazidime, but there was no significant difference in OD values between treated with gallium nitrate alone and meropenem alone.

Conclusion

Burkholderia cepacia have strong biofilm formation ability. Gallium nitrate alone or in combined with ceftazidime have obvious inhibitory effect on the biofilm formation.

表1 34株临床分离的洋葱伯克霍尔德菌体外药敏分析结果(n=34)
图1 高倍镜下观察洋葱伯克霍尔德菌生物膜形成(10×40倍)
表2 不同生物膜形成能力的菌株对抗菌药物的耐药率比较
表3 硝酸镓单用及分别联合头孢他啶和美罗培南光密度与抑制率比较
1
Baylan O. An opportunistic pathogen frequently isolated from immunocompromised patients: Burkholderia cepacia complex[J]. Mikrobiyol Bul, 2012,46(2):304-318.
2
Ocak F, Gözalan A, Ozçelik U, et al. Isolation frequency of Burkholderia cepacia from cystic fibrosis patients[J]. Mikrobiyol Bul, 2002,36(1):1-10.
3
Kuzumoto K, Kubota N, Ishii K, et al. Successful cessation of transmitting healthcare- associated infections due to Burkholderia cepacia complex in a neonatal intensive care unit in a Japanese children′s hospital[J]. Eur J Med Res, 2011,16(2):537-542.
4
Liao CH, Chang HT, Lai CC, et al. Clinical characteristics and outcomes of patients with Burkholderia cepacia bacteremia in an intensive care unit[J]. Diagn Microbiol Infect Dis, 2011,70(2):260-266.
5
胡付品,郭燕,朱德妹,等. 2016年中国CHINET细菌耐药性监测[J]. 中国感染与化疗杂志, 2017,17(5):481-491.
6
葛新,邢杰. 硝酸镓联合氧氟沙星抑制尿路致病性大肠杆菌生物膜形成[J]. 中国现代应用药学, 2014,31(11):1330-1333.
7
Peeters E, Nelis HJ, Coenye T. Resistance of planktonic and biofilm-grown Burkholderia cepacia complex isolates to the transition metal gallium[J]. J Antimicrob Chemother, 2008,61(26):1062-1065.
8
吴浩昕,李蓉,葛新. 硝酸镓对临床分离金黄色葡萄球菌生物膜的体外清除作用[J]. 中国感染控制杂志, 2015,14(4):223-226.
9
Marti S, Rodrlguez-Bafio J, Catel-Ferreira M, et a1. Bioflm formation at the solid-liquid and air-liquid interfaces by Acinetobacterspecies[J]. BMC Res Notes, 2011,12(4):5.
10
韩欣欣,李庆淑,申丽婷,等. 鲍曼不动杆菌生物膜形成能力与生物膜相关基因及耐药性之间的关系[J]. 中华危重病急救医学, 2014,26(9):639-643.
11
Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases[J]. Nat Rev Microbiol, 2004,2(2):95-108.
12
Lenz Ailyn P, Williamson Kerry S, Pitts B, et al. Localized gene expression in Pseudomonas aeruginosa biofilms[J]. Appl Environ Microbiol, 2008,74(14):4463-4471.
13
Landini P, Antoniani D, Burgess JG, et a1. Molecular mechanisms of compounds afecting bacterial bioflm formation and dispersal[J]. Appl Microbiol Biotechnol, 2010,86(3):813-823.
14
Xu KD, McFeters GA, Stewart PS. Biofilm resistance to antimicrobial agents[J]. Microbiol, 2000,146(3):547-549.
15
胡晓丰,史云,戚丽华,等. 金黄色葡萄球菌生物膜形成机制研究进展[J]. 生物技术通讯, 2014,25(5):714-718.
16
茅国峰,何秋丽,沈少卿. 浙江绍兴地区洋葱伯克霍尔德菌的基因分型及其耐药性[J]. 国际流行病学传染病学杂志, 2015,42(6):376-379.
17
Rao RS, Karthika RU, Singh SP, et a1. Correlation between biofilm production and multiple drug resistance in imipenem resistant clinical isolates of Acinetobacter baumannii[J]. Indian J Med Microbiol, 2008,26(4):333-337.
18
Soriano F, Huelves L, Naves P, et a1. In vitro activity of ciprofloxacin, moxifloxacin, vancomycin and erythromycin against planktonic and biofilm forms of Corynebacterium urealyticum[J]. J Antimicrob Chemother, 2009,63(2):353-356.
19
Espinal P, Marti S, Vila J. Effect of biofilm formation on the survival of Acinetobaeter baumannii on dry surfaces[J]. J Hosp Infect, 2012,80(1):56-60.
20
Wood P, Caldwell DE, Evans E, et al. Surface-catalysed disinfection of thick Pseudomonas aeruginosa biofilms[J]. J Appl Microbiol, 1998,84(6):1092-1098.
21
Jones MN. Use of liposomes to deliver bactericides to bacterial biofilms[J]. Methods Enzymol, 2005,391(9):211-228.
22
Yanagihara K, Tomono K, Imamura Y, et al. Effect of clarithromycin on chronic respiratory infection caused by Pseudomonas aeruginosa with biofilm formation in an experimental murine model[J]. J Antimicrob Chemother, 2002,49(5):867-870.
23
Zaitseva J, Granik V, Belik A, et al. Effect of nitrofurans and NO generators on biofilm formation by Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370[J]. Res Microbiol, 2009,160(5):353-357.
24
Dales L, Ferris W, Vandemheen K, et al. Combination antibiotic susceptibility of biofilm- grown Burkholderia cepacia and Pseudomonas aeruginosa isolatedfrom patients with pulmonary exacerbations of cystic fibrosis[J]. Eur J Clin Microbiol Infect Dis, 2009,28(10):1275-1279.
25
Yang L, Barken KB, Skindersoe ME, et al. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa[J]. Microbiology, 2007,153(5):1318-1328.
26
Kaneko Y, Thoendel M, Olakanmi O, et al. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity[J]. J Clin Invest, 2007,117(4):877-888.
[1] 张烈, 严一核, 杜洁瑜. 分泌型白细胞蛋白酶抑制因子对无创呼吸机治疗重症肺炎患者的预测效能[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 301-306.
[2] 李星月, 董伟, 徐永波, 张文法, 胡晓璇, 钟玉绪, 褚海波. 浅表血栓性静脉炎管壁基质金属蛋白酶及其抑制剂表达研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 338-343.
[3] 罗文斌, 韩玮. 胰腺癌患者首次化疗后中重度骨髓抑制的相关危险因素分析及预测模型构建[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 357-362.
[4] 赖圣杰, 方欣, 方友强. 2023年欧洲内分泌学会及加拿大泌尿外科学会肾上腺偶发瘤诊疗指南解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 309-312.
[5] 方道成, 陈立新, 胡媛媛. 输尿管支架结壳的相关研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 402-405.
[6] 郑琪, 马婕群, 张彦兵, 廖子君, 张锐. EPHA5突变预测肺腺癌免疫检查点抑制剂治疗预后的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 548-552.
[7] 胡志伟, 吴继敏, 邓昌荣, 战秀岚, 纪涛, 王峰, 田书瑞, 陈冬, 张玉, 刘健男, 宋庆. 抗反流黏膜套扎治疗顽固性胃食管反流病[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(04): 227-233.
[8] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[9] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[10] 魏志鸿, 刘建勇, 吴小雅, 杨芳, 吕立志, 江艺, 蔡秋程. 肝移植术后急性移植物抗宿主病的诊治(附四例报告)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 846-851.
[11] 张英信, 林婷, 张剑文. 构建靶向HLA-A2且表达PD-L1的CAR-Treg细胞及验证其对CD4+T细胞抑制作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 719-728.
[12] 陆思楠, 苏同荣, 张启逸. 索凡替尼转化治疗胰腺神经内分泌肿瘤肝转移一例并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 526-530.
[13] 施麟宵, 洪兰兰, 阳柳, 芶碧珍, 刘畅, 吴欣. 钠-葡萄糖协同转运蛋白2 抑制剂治疗原发性膜性肾病的疗效及其对Th1/Th2 的影响[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 261-267.
[14] 马豆豆, 丁艳, 古今, 王丽芳, 石连杰. 以发热为首发表现的强直性脊柱炎合并潜伏性结核感染一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 791-794.
[15] 徐靖亭, 孔璐. PARP抑制剂治疗卵巢癌的耐药机制及应对策略[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 584-588.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?