1 |
Baylan O. An opportunistic pathogen frequently isolated from immunocompromised patients: Burkholderia cepacia complex[J]. Mikrobiyol Bul, 2012,46(2):304-318.
|
2 |
Ocak F, Gözalan A, Ozçelik U, et al. Isolation frequency of Burkholderia cepacia from cystic fibrosis patients[J]. Mikrobiyol Bul, 2002,36(1):1-10.
|
3 |
Kuzumoto K, Kubota N, Ishii K, et al. Successful cessation of transmitting healthcare- associated infections due to Burkholderia cepacia complex in a neonatal intensive care unit in a Japanese children′s hospital[J]. Eur J Med Res, 2011,16(2):537-542.
|
4 |
Liao CH, Chang HT, Lai CC, et al. Clinical characteristics and outcomes of patients with Burkholderia cepacia bacteremia in an intensive care unit[J]. Diagn Microbiol Infect Dis, 2011,70(2):260-266.
|
5 |
胡付品,郭燕,朱德妹,等. 2016年中国CHINET细菌耐药性监测[J]. 中国感染与化疗杂志, 2017,17(5):481-491.
|
6 |
葛新,邢杰. 硝酸镓联合氧氟沙星抑制尿路致病性大肠杆菌生物膜形成[J]. 中国现代应用药学, 2014,31(11):1330-1333.
|
7 |
Peeters E, Nelis HJ, Coenye T. Resistance of planktonic and biofilm-grown Burkholderia cepacia complex isolates to the transition metal gallium[J]. J Antimicrob Chemother, 2008,61(26):1062-1065.
|
8 |
吴浩昕,李蓉,葛新. 硝酸镓对临床分离金黄色葡萄球菌生物膜的体外清除作用[J]. 中国感染控制杂志, 2015,14(4):223-226.
|
9 |
Marti S, Rodrlguez-Bafio J, Catel-Ferreira M, et a1. Bioflm formation at the solid-liquid and air-liquid interfaces by Acinetobacterspecies[J]. BMC Res Notes, 2011,12(4):5.
|
10 |
韩欣欣,李庆淑,申丽婷,等. 鲍曼不动杆菌生物膜形成能力与生物膜相关基因及耐药性之间的关系[J]. 中华危重病急救医学, 2014,26(9):639-643.
|
11 |
Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases[J]. Nat Rev Microbiol, 2004,2(2):95-108.
|
12 |
Lenz Ailyn P, Williamson Kerry S, Pitts B, et al. Localized gene expression in Pseudomonas aeruginosa biofilms[J]. Appl Environ Microbiol, 2008,74(14):4463-4471.
|
13 |
Landini P, Antoniani D, Burgess JG, et a1. Molecular mechanisms of compounds afecting bacterial bioflm formation and dispersal[J]. Appl Microbiol Biotechnol, 2010,86(3):813-823.
|
14 |
Xu KD, McFeters GA, Stewart PS. Biofilm resistance to antimicrobial agents[J]. Microbiol, 2000,146(3):547-549.
|
15 |
胡晓丰,史云,戚丽华,等. 金黄色葡萄球菌生物膜形成机制研究进展[J]. 生物技术通讯, 2014,25(5):714-718.
|
16 |
茅国峰,何秋丽,沈少卿. 浙江绍兴地区洋葱伯克霍尔德菌的基因分型及其耐药性[J]. 国际流行病学传染病学杂志, 2015,42(6):376-379.
|
17 |
Rao RS, Karthika RU, Singh SP, et a1. Correlation between biofilm production and multiple drug resistance in imipenem resistant clinical isolates of Acinetobacter baumannii[J]. Indian J Med Microbiol, 2008,26(4):333-337.
|
18 |
Soriano F, Huelves L, Naves P, et a1. In vitro activity of ciprofloxacin, moxifloxacin, vancomycin and erythromycin against planktonic and biofilm forms of Corynebacterium urealyticum[J]. J Antimicrob Chemother, 2009,63(2):353-356.
|
19 |
Espinal P, Marti S, Vila J. Effect of biofilm formation on the survival of Acinetobaeter baumannii on dry surfaces[J]. J Hosp Infect, 2012,80(1):56-60.
|
20 |
Wood P, Caldwell DE, Evans E, et al. Surface-catalysed disinfection of thick Pseudomonas aeruginosa biofilms[J]. J Appl Microbiol, 1998,84(6):1092-1098.
|
21 |
Jones MN. Use of liposomes to deliver bactericides to bacterial biofilms[J]. Methods Enzymol, 2005,391(9):211-228.
|
22 |
Yanagihara K, Tomono K, Imamura Y, et al. Effect of clarithromycin on chronic respiratory infection caused by Pseudomonas aeruginosa with biofilm formation in an experimental murine model[J]. J Antimicrob Chemother, 2002,49(5):867-870.
|
23 |
Zaitseva J, Granik V, Belik A, et al. Effect of nitrofurans and NO generators on biofilm formation by Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370[J]. Res Microbiol, 2009,160(5):353-357.
|
24 |
Dales L, Ferris W, Vandemheen K, et al. Combination antibiotic susceptibility of biofilm- grown Burkholderia cepacia and Pseudomonas aeruginosa isolatedfrom patients with pulmonary exacerbations of cystic fibrosis[J]. Eur J Clin Microbiol Infect Dis, 2009,28(10):1275-1279.
|
25 |
Yang L, Barken KB, Skindersoe ME, et al. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa[J]. Microbiology, 2007,153(5):1318-1328.
|
26 |
Kaneko Y, Thoendel M, Olakanmi O, et al. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity[J]. J Clin Invest, 2007,117(4):877-888.
|