切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2020, Vol. 08 ›› Issue (02) : 65 -70. doi: 10.3877/cma.j.issn.2095-5820.2020.02.001

所属专题: 文献

综述

结核分枝杆菌耐多药基因及其检测新技术
朱庆义1,()   
  1. 1. 030032 太原,太原金域临床检验所
  • 收稿日期:2019-10-28 出版日期:2020-05-28
  • 通信作者: 朱庆义

Multidrug-resistant genes of mycobacterium tuberculosis and associated detection methods

Qingyi Zhu1,()   

  1. 1. Taiyuan Kingmed Center for Clinical Laboratory, Taiyuan 030032, China
  • Received:2019-10-28 Published:2020-05-28
  • Corresponding author: Qingyi Zhu
  • About author:
    Corresponding author: Zhu Qingyi, Email:
引用本文:

朱庆义. 结核分枝杆菌耐多药基因及其检测新技术[J]. 中华临床实验室管理电子杂志, 2020, 08(02): 65-70.

Qingyi Zhu. Multidrug-resistant genes of mycobacterium tuberculosis and associated detection methods[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2020, 08(02): 65-70.

结核病曾严重地威胁着人类的健康,随着抗结核药物的不断发展和人们卫生状况的改善,结核病的发病率和病死率大幅度下降。但20世纪80年代后,由于结核分枝杆菌耐药性和耐多药菌株的产生,肺结核的发病率又有所提升。本文针对耐多药结核病人的病原学快速诊断及其耐药基因的类型、耐药机理和分子生物学诊断新技术作了简述。

Tuberculosis (TB) has been a serious threat to human health. With the continuous development of anti-TB drugs and the improvement of people’s health conditions, the incidence and mortality of TB has been greatly reduced. However, after the 1980s, the incidence of TB increased due to the emergence of drug-resistant strains and multidrug resistance of mycobacterium tuberculosis (MTB). In this paper, we review the rapid diagnosis etiology of multidrug resistant tuberculosis (MDR-TB), the types of drug-resistant genes, the mechanism of drug resistance and the new diagnostic techniques based on molecular biology .

表1 MTB与获得性耐药相关的主要基因
1
Kenyon TA, Valway SE, Ihle WW, et al. Transmission of multidrug-resistant Mycobacterium tuberculosis during a long airplane flight[J]. New Engl J Med, 1996,334(15):933.
2
Forbes BA, Hall GS, Miller MB, et al. Practice guidelines for clinical microbiology laboratories: mycobacteria[J]. Clin Microbiol Rev, 2018,31(2):8-17.
3
World Health Organization. Policy statement: Global tuberculosis report 2015[R]. World Health Organization, Geneva, Oct. 28,2015.
4
Zumla A, George AW, Sharma V, et al. The WHO 2014 global tuberculosis report--further to go[J]. Lancet Global Health, 2015,3(1): 10-12.
5
中华医学会结核病学分会临床检验专业委员会. 结核病病原学分子诊断专家共识[J]. 中华结核与呼吸杂志, 2018,41(9):688-695.
6
World Health Organization. Policy statement: automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF System[R]. Geneva: WHO, 2011.
7
Bholla M, Kapalata N, Masika E, et al. Evaluation of Xpert®MTB/RIF and Ustar EasyNAT™TB IAD for diagnosis of tuberculous lymphadenitis of children in Tanzania: a prospective descriptive study[J]. BMC Infect Dis, 2016,16:246.
8
李妍,张天华,鲜小萍,等. Xpert MTB/RIF技术在MTB检测中的应用价值[J]. 检验医学, 2016,31(1):52-55.
9
Dorman SE, Schumacher SG, Alland D, et al. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study[J]. Lancet Infect Dis, 2018, 18(1):76-84.
10
Gürsoy NC, Yakupoğullari Y, Tekerekoğlu MS, et al. Evaluation of the diagnostic performance of Xpert MTB/RIF test for the detection of Mycobacterium tuberculosis and rifampin resistance in clinical samples[J]. Mikrobiol Bull, 2016,50(2):196-204.
11
Schmit KM, Wansaula Z, Pratt R, et al. Tuberculosis-United States, 2016[R]. MMWR Morb Mortal Wkly Rep, 2017,66:289-294.
12
Hofmann-Thiel S, van Ingen J, Feldmann K, et al. Mechanisms of heteroresistance to isoniazid and rifampin of Mycobacterium tuberculosis in Tashkent, Uzbekistan[J]. Eur Respir J, 2009,33(2):368-374.
13
孙冰梅,车志宏. 结核分枝杆菌耐药的分子机制及耐药基因检测方法的研究进展[J]. 山西医药杂志, 2005,34(4):301-303.
14
Jagielskin T, Minias A, van Ingen J, et al. Methodological and clinical aspects of the molecular epidemiology of mycobacterium tuberculosis and other mycobacteria[J]. Clin Microbiol Rev, 2016,29(2):239-290.
15
Rueda J, Realpe T, Mejía G, et al. GenoType MTBDR plus 1.0® for the detection of cross-resistance between isoniazide and ethionamide in isolates of multidrug-resistant Mycobacterium tuberculosis[J]. Biomedica, 2015,35(4):541-548.
16
陈亮, 宝福凯. 结核分枝杆菌异烟肼耐药基因与耐药机制研究进展[J]. 中国人蓄共患杂志, 2009,25(3):288-290.
17
Gürsoy NC, Yakupoğullari Y, Tekerekoğlu MS, et al. Evaluation of the diagnostic performance of Xpert MTB/RIF test for the detection of Mycobacterium tuberculosis and rifampin resistance in clinical samples[J]. Mikrobiol Bull, 2016,50(2):196-204.
18
Yue J, Shi W, Xie J, et al. Mutations in the rpoB gene of multidrug-resistant Mycobacterium tuberculosis isolates from China[J]. J Clin Microbiol, 2003,41(5):2209-2212.
19
Chauhan DS, Sharma R, Parashar D, et al. Rapid detection of ethambutol resistant Mycobacterium tuberculosis in clinical specimens by real-time polymerase chain reaction hybridisation probe method[J]. Indian J Med Microbiol, 2018,36(2):211-216.
20
梁建琴,王孟山,吴雪琼. 分支杆菌耐乙胺丁醇分子机制的研究进展[J]. 中华结核和呼吸杂志, 2001,24(2):126-128.
21
Khosravi AD, Etemad N, Hashemzadeh M, et al. Frequency of rrs and rpsL mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from Iranian patients[J]. J Glob Antimicrob Resist, 2017,9:51-56.
22
杨彩虹, 曹旭东, 史静雪, 等. 结核分枝杆菌临床分离株链霉素耐药性的检测及耐药基因突变位点分析[J]. 石河子大学学报(自然科学版), 2017,35(6):169-175.
23
Njire M, Tan Y, Mugweru J, et al. Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update[J]. Adv Med Sci, 2016,61(1):63-71.
24
姜英,彭俊平,杨帆,等. 结核分枝杆菌耐吡嗪酰胺分子机制研究[J]. 微生物学免疫学进展, 2007,35(1):5-9.
25
Xie YL, Chakravorty S, Armstrong DT, et al. Evaluation of a rapid molecular drug-susceptibility test for tuberculosis[J]. N Engl J Med, 2017,377(11):1044-1054.
26
魏淑贞, 赵永, 梁庆福, 等. 福建省耐多药结核分枝杆菌对氟喹诺酮类药物表型耐药与gyrA基因突变特征分析[J].中国人兽共患病学报, 2016,32(10):876-879.
27
Kalokhe AS, Shafiq M, Lee JC, et al. Multidrug-resistant tuberculosis drug susceptibility and molecular diagnostic testing[J]. Am J Med Sci, 2013,345(2):143-148.
28
Nusrath Unissa A, Hanna LE. Molecular mechanisms of action,resistance,detection to the first-line anti tuberculosis drugs: Rifampicin and pyrazinamide in the post whole genome sequencing era[J]. Tuberculosis (Edinb), 2017,105:96-107.
29
刘巧, 邵燕, 宋红焕, 等. 江苏省结核分枝杆菌耐药相关基因突变特征研究[J]. 中华疾病控制杂志, 2013,17(2):141-144.
30
吴雪琼,庄玉辉,张俊仙, 等. 结核分枝杆菌耐药基因检测[J]. 解放军医学院学报, 1998(3):185-188.
31
Wedajo W, Schön T, Bedru A, et al. A 24-well plate assay for simultaneous testing of first and second line drugs against Mycobacterium tuberculosis in a high endemic setting[J]. BMC Res Notes, 2014,10(7):512.
32
Margaryan H. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to isoniazid, rifampicin (MTBDR plus), fluoroquinolone and injectable second-line drugs (MTBDRsl)[J]. Inter J Mycobacteriol, 2015,4:49-50.
33
Friedrichs O, Rachow A, Saathoff E, et al. Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early sputum biomarker of response to tuberculosis treatment[J]. Lancet Respir Med, 2013,1(6): 462-470.
34
徐礼锋,余旭良,张峰,等.液体MGIT培养联合Xpert MTB/RIF快速检测结核分枝杆菌及其耐药性的研究[J]. 中华检验医学杂志, 2016,39(4):272-276.
35
徐东芳,王庆. GeneXpert MTB RIF系统在结核分枝杆菌和利福平耐药性快速检测中的应用[J]. 检验医学, 2017,32(8):722-726.
36
Kiepiela P, Bishop KS, Smith AN, et al. Genomic mutations in the katG,inhA and aphC genes are useful for the prediction of isoniazid resistance in Mycobacterium tuberculosis isolates from Kwazulu Natal, South Africa[J]. Tuber Lung Dis, 2000,80(1):47-56.
37
程晓东,于文彬,别良峰,等. 多重聚合酶链反应-单链构象多态性分析检测耐异烟肼结核分枝杆菌[J]. 中华结核和呼吸杂志, 2004,27(1):23-26.
38
Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence[J]. Nature, 1998,393(6685):537-544.
39
Doyle RM, Burgess C, Williams R, et al. Direct whole-genome sequencing of sputum accurately identifies drug-resistant Mycobacterium tuberculosis faster than MGIT culture sequencing[J]. J Clin Microbiol, 2018,56(8):6-18.
40
Shenoy VP, Kumar A, Chawla K. Rapid detection of multidrug resistant tuberculosis in respiratory specimens at a tertiary care centre in south coastal Karnataka using Genotype MTBDR plus assay[J]. Iran J Microbiol, 2018,10(5): 275-280.
41
Tahmasebi P, Farnia P, Sheikholslami F, et al. Rapid identification of extensively and extremely drug resistant tuberculosis from multidrug resistant strains; using PCR-RFLP and PCR-SSCP[J]. Iran J Microbiol, 2012,4(4):165-170.
42
李栋梁, 侯瑞生, 王侃,等. PCR-SSCP法检测结核分枝杆菌耐药基因突变分析[J].中国卫生检验杂志, 2014,24(21):3127-3128.
43
Coll F, McNerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences[J]. 2015,7(1):51.
44
于保东,华树成,张艳华. 聚合酶链反应-直接测序法快速检测结核分枝杆菌利福平耐药菌株的研究[J]. 中国实验诊断学, 2008,12(2):202-203.
45
Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence[J]. Nature, 1998,393(6685):537-544.
46
Sharma K, Verma R, Advani J, et al. Whole genome sequencing of mycobacterium tuberculosis isolates from extrapulmonary sites[J]. OMICS, 2017,21(7):413-425.
47
Tyler AD, Christianson S, Knox NC, et al. Comparison of sample preparation methods used for the next-generation sequencing of Mycobacterium tuberculosis[J]. PLoS One, 2016,11(2):e0148676.
48
Ko DH, Lee EJ, Lee SK, et al. Application of next-generation sequencing to detect variants of drug-resistant Mycobacterium tuberculosis: genotype-phenotype correlation[J]. Ann Clin Microbiol Antimicrob, 2019,18(1):2.
49
徐鹏,甘明宇,高谦. 二代测序技术在结核分枝杆菌研究中的应用进展[J]. 微生物与感染, 2015,10(1):54-60.
50
Coll F, McNerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences[J]. Genome Med, 2015, 7(1):51.
[1] 汤艳芬, 赵雯, 马成杰, 刘刚, 陈奇, 刘菁, 薛天娇, 刘岩岩, 陈融佥, 王宇. 人类免疫缺陷病毒感染合并鸟分枝杆菌复合群病临床特点[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 348-353.
[2] 谭洁, 詹森林, 邓国防, 张培泽. 抗干扰素γ自身抗体综合征导致哥伦比亚分枝杆菌播散性感染一例[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(03): 210-214.
[3] 张菊侠, 杨万福. 基于85B mRNA的逆转录-实时定量聚合酶链反应对肺结核分枝杆菌感染的诊断价值[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(04): 316-319.
[4] 杨智彬, 申恩瑞, 潘丽, 赵丽惠, 王聪, 杨艳霞, 李阳, 王巧凤, 马世武. 不同临床类型结核病患者血清白细胞介素-21水平及其临床意义[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(01): 48-53.
[5] 郭倩, 朱召芹, 钱雪琴, 金鑫, 苏俊, 张腾飞, 魏剑浩. 人类免疫缺陷病毒/结核分枝杆菌双重感染者结核分枝杆菌分离株一线药物耐药特征[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(05): 434-439.
[6] 张霞, 付玉荣, 李猛, 孟祥英, 高昆山, 伊正君. 自噬在人类免疫缺陷病毒和结核分枝杆菌共同感染中的作用[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(04): 313-315.
[7] 张燕珍, 王锡携, 文小兰. 血清巨噬细胞迁移抑制因子对活动性肺结核分诊检测的意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 200-202.
[8] 洪青青, 姚超, 张新宝. 非结核分枝杆菌肺病患者流行病学临床特点及耐药情况分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 506-508.
[9] 陈众众, 闵凌峰, 刘家昌. 应用宏基因二代测序技术诊断胞内分枝杆菌型NTM肺病一例并文献复习[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 448-450.
[10] 赖宁, 庄泽钦, 钟典. 广州地区非结核分枝杆菌肺病微生物及临床特征分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 339-343.
[11] 黄德东, 刘庭贵, 张云, 施洁, 韩湉湉, 庄建文, 魏西飞, 顾兴. γ-干扰素释放试验在活动性肺结核诊断中的价值[J]. 中华肺部疾病杂志(电子版), 2020, 13(03): 329-333.
[12] 颜然然, 白振中, 郭瑞霞, 冯喜英, 久太, 谭玉敏. 血清铁对肺结核的诊断意义[J]. 中华肺部疾病杂志(电子版), 2020, 13(03): 411-413.
[13] 包训迪, 吴丹丹, 江跃, 梁锁, 王超, 王舒, 王庆. 非结核分枝杆菌鉴定方法和病原谱分析[J]. 中华临床医师杂志(电子版), 2022, 16(01): 38-42.
[14] 曾忠, 周静, 陶俊, 赖海斌. 应用基因芯片技术诊断淋巴结核及其耐药性分析[J]. 中华临床医师杂志(电子版), 2020, 14(11): 890-894.
[15] 刘红伟, 李晓非, 苏俊华, 钱绍丽, 张建瑞, 普玨. 昆明市75例非结核分枝杆菌鉴定及药敏结果分析[J]. 中华临床实验室管理电子杂志, 2020, 08(03): 170-174.
阅读次数
全文


摘要