切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2020, Vol. 08 ›› Issue (03) : 158 -165. doi: 10.3877/cma.j.issn.2095-5820.2020.03.007

所属专题: 文献

实验研究

Fmr1基因敲除型小鼠肠道菌群结构分析
欧阳颖仪1, 陈盛强2, 田丽如1, 杨晓怡1, 邢晓敏1, 庄海明3, 黄晓妃3, 邓小燕1,()   
  1. 1. 510182 广州,广州医科大学金域检验学院
    2. 510260 广州,广州医科大学附属第二医院神经科
    3. 510182 广州,广州医科大学第二临床学院
  • 收稿日期:2020-04-03 出版日期:2020-08-28
  • 通信作者: 邓小燕
  • 基金资助:
    2020年广东省科技创新战略("攀登计划"专项资金)项目(06-407-2003005); 2019广州医科大学大学生科技创新项目(2018A090); 2019年广东省大学生创新创业训练计划项目(S201910570077); 2019年广州医科大学大学生实验室开放项目(2019-82-20)

Analysis of intestinal flora composition in Fmr1 knockout mice

Yingyi Ouyang1, Shengqiang Chen2, Liru Tian1, Xiaoyi Yang1, Xiaomin Xing1, Haiming Zhuang3, Xiaofei Huang3, Xiaoyan Deng1,()   

  1. 1. KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510182, China
    2. The Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
    3. Department of Medical lmaging, The Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
  • Received:2020-04-03 Published:2020-08-28
  • Corresponding author: Xiaoyan Deng
  • About author:
    Corresponding author: Deng Xiaoyan, Email:
引用本文:

欧阳颖仪, 陈盛强, 田丽如, 杨晓怡, 邢晓敏, 庄海明, 黄晓妃, 邓小燕. Fmr1基因敲除型小鼠肠道菌群结构分析[J]. 中华临床实验室管理电子杂志, 2020, 08(03): 158-165.

Yingyi Ouyang, Shengqiang Chen, Liru Tian, Xiaoyi Yang, Xiaomin Xing, Haiming Zhuang, Xiaofei Huang, Xiaoyan Deng. Analysis of intestinal flora composition in Fmr1 knockout mice[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2020, 08(03): 158-165.

目的

探讨Fmr1基因敲除型小鼠粪便肠道细菌群落的结构及多样性。

方法

利用16S rRNA高通量测序技术对10份小鼠粪便样本进行测序分析并进行生物学分析。

结果

两组样本测序共获得高质量序列325 280条,核心菌门为拟杆菌门、厚壁菌门、变形菌门。Anosim分析表明基因敲除(KO)组与正常野生型(WT)组小鼠两组间具有显著差异,组内样品重复性满足数据分析要求,Adonis分析表明本次检验可信度高(P<0.05)。LDA值展现KO组与WT组小鼠肠道微生态菌群有明显差异,基于Unifrac距离,Amova分析表明KO和WT组组间差异显著(P<0.05)。

结论

KO组与WT组小鼠肠道微生物群落的结构及多样性存在显著差异且具有统计学意义,提示孤独症与肠道微生态系统密切相关,肠道微生态系统可能通过微生物代谢的间接作用影响孤独症的发生发展,但具体的作用机制仍需进一步的研究。

Objective

To explore the structure and diversity of fecal bacterial community in Fmr1 knockout mice.

Methods

10 mouse feces samples were sequenced and analyzed by 16S rRNA high-throughput sequencing.

Results

A total of 325 280 high quality sequences were obtained from the two groups of samples. And 3 core bacteria were Bacteroidetes, Firmicutes and Proteobacteria.The analysis of Anosim showed that there were significant differences between the knockout (KO) and the wild-type (WT) groups.The repeatability of the samples within the group meets the data analysis requirements.The analysis of Adonis showed that the reliability of this test was high (P<0.05). LDA showed significant differences in intestinal microflora between KO and WT groups.Based on the distance of Unifrac,the analysis of Amova showed significant differences between KO and WT groups (P<0.05).

Conclusions

The intestinal microbial community structure and diversity of KO and WT groups exists significant differences,indicating that autism is closely related to the intestinal micro ecology system. The intestinal microecology system may affect the development of autism by microbial metabolism indirectly, but the exact mechanism still needs further research.

图1 实验小鼠鉴定结果
表1 样本OTU统计
图2 Anosim组间差异分析图
表2 KO与WT样本的Alpha多样性统计
图3 Alpha多样性分析曲线图。A:样本的Observed species指数稀释曲线;B:样本的Shannon指数稀释曲线;C:样本的Rank Abudance指数稀释曲线
图4 Beta分析示意图。A:所示为样本PCoA(Unweighted Unifrac)分析图;B:样本PCoA(Weighted Unifrac)分析图
图5 各样本UPGMA聚类结果示意图。A:基于Unweighted Unifrac距离的UPGMA聚类树;B:基于Weighted Unifrac距离的UPGMA聚类树
图6 Venn图
表3 KO组与WT组中肠道微生态菌群在门水平上的序列丰度
表4 KO组与WT组中肠道微生态菌群在科水平上的序列丰度
表5 KO组与WT组中肠道微生态菌群在属水平上的序列丰度
表6 Adonis组间差异分析统计表
表7 Amova组间差异分析统计表
图7 LDA值分布图
[1]
Rajaratnam A, Shergill J, Salcedo-Arellano M, et al. Fragile X syndrome and fragile X-associated disorders[J]. F1000Res, 2017,6:2112.
[2]
Alonso C, Vicario M, Pigrau M, et al. Intestinal barrier function and the brain-gut axis[J]. Adv Exp Med Biol, 2014,817:73-113.
[3]
Cao X, Lin P, Jiang P, et al. Characteristics of the gastrointestinal microbiome in children with autism spectrum disorder: a systematic review[J]. Shanghai Arch Psychiatry, 2013,25(6):342-353.
[4]
黄艳,高凌. 肠道微生物在脑肠轴及相关疾病中的作用[J]. 世界华人消化杂志, 2017,25(34):3032-3037.
[5]
Bakker CE, Verheij C, Willemsen R, et al. Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium[J]. Cell, 1994,78(1):23-33.
[6]
戴丽军,叶炳飞,黄月玲. Fmr1基因敲除对小鼠生理发育和繁殖性能的影响[J]. 中国比较医学杂志, 2011,21(1):64-66.
[7]
邢州,孙卫文,黄越玲, 等. 采用PCR方法检测Fmr1基因敲除小鼠的基因型[J]. 现代医院, 2009,9(5):12-14.
[8]
郭小艳. 脆性X综合征分子诊断研究进展[J]. 中华医学遗传学杂志, 2012, 29(3):296-299.
[9]
Messaoudi M, Lalonde R, Violle N, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects[J]. Br J Nutr, 2010,105(5):755-764.
[10]
Finegold SM, Dowd SE, Gontcharova V, et al. Pyrosequencing study of fecal microflora of autistic and control children[J]. Anaerobe, 2010, 16(4):444-453.
[11]
De Angelis M, Piccolo M, Vannini L, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified[J]. PLoS One, 2013,8(10):e76993.
[12]
Gondalia SV, Palombo EA, Knowles SR, et al. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings[J]. Autism Res, 2012, 5(6):419-427.
[13]
Bailey MT. Influence of stressor-induced nervous system activation on the intestinal microbiota and the importance for immunomodulation[J]. Adv Exp Med Biol, 2014,817:255-276.
[14]
申变红,陶云海,朱春燕. 肠道菌群比例在精神分裂症发病中的作用及其与炎症因子的关系[J]. 中华全科医学, 2018,16(2):276-278.
[15]
Desai MS, Seekatz AM, Koropatkin NM, et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility[J]. Cell, 2016,167(5):1339-1353.
[16]
张亮,王世达,谢方, 等. 肠易激综合征大鼠肠道菌群和氨基酸代谢的变化[J]. 营养学报, 2018,40(3):240-244.
[17]
Yu M, Jia H, Zhou C, et al. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics[J]. J Pharm Biomed Anal, 2017,138:231-239.
[1] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[2] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[3] 李玲, 刘亚, 李培玲, 张秀敏, 李萍. 直肠癌患者术后肠道菌群的变化与抑郁症相关性研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 607-610.
[4] 方道成, 唐春华, 胡媛媛. 肠道菌群对草酸钙肾结石形成的影响[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 509-513.
[5] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[6] 胡欣欣, 孟晓凡, 郭兆安. 高血压肾病的发病机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(06): 339-343.
[7] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[8] 赵小民, 杨军, 田巍巍. 枳术颗粒联合利那洛肽治疗便秘型肠易激综合征的临床研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 465-469.
[9] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[10] 宋燕秋, 戚桂艳, 杨双双, 周萍. 重症急性胰腺炎肠道菌群特征及早期肠内营养联合微生态制剂治疗的临床价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 442-447.
[11] 谢鸿, 李娜, 李尚日, 谢涛. 肠道菌群特征对结肠癌化学治疗疗效的影响[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 53-56.
[12] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[13] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[14] 韦美菊, 潘玲. 肠道菌群-胆汁酸代谢轴在慢性肾脏病中的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(02): 219-222.
[15] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
阅读次数
全文


摘要