切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2022, Vol. 10 ›› Issue (03) : 142 -146. doi: 10.3877/cma.j.issn.2095-5820.2022.03.004

实验研究

慢性乙型肝炎患者转氨酶与外周血中髓源性抑制细胞的关系研究
张意钗1, 黄楠2, 梁晓丽2, 林敏3,()   
  1. 1. 510180 广东广州,广州市第一人民医院检验科
    2. 510182 广东广州,广州医科大学金域检验学院
    3. 510260,广东广州,广州医科大学附属第二医院检验科
  • 收稿日期:2021-04-16 出版日期:2022-08-28
  • 通信作者: 林敏
  • 基金资助:
    医学检验创新联合实验室,广东省本科高校教学质量与教学改革工程建设项目(粤教高函〔2021〕29号)

Relationship between aminotransferase and myeloid-derived suppressor cells in peripheral blood of patients with chronic hepatitis B

Yichai Zhang1, Nan Huang2, Xiaoli Liang2, Min Lin3,()   

  1. 1. Guangzhou First People's Hospital, Guangzhou Guangdong 510180, China
    2. KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou Guangdong 510182, China
    3. The Second Affilated Hospital of Guangzhou Medical University, Guangzhou Guangdong 510260, China
  • Received:2021-04-16 Published:2022-08-28
  • Corresponding author: Min Lin
引用本文:

张意钗, 黄楠, 梁晓丽, 林敏. 慢性乙型肝炎患者转氨酶与外周血中髓源性抑制细胞的关系研究[J]. 中华临床实验室管理电子杂志, 2022, 10(03): 142-146.

Yichai Zhang, Nan Huang, Xiaoli Liang, Min Lin. Relationship between aminotransferase and myeloid-derived suppressor cells in peripheral blood of patients with chronic hepatitis B[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2022, 10(03): 142-146.

目的

探讨慢性乙型肝炎(CHB)患者外周血中髓源性抑制细胞(MDSCs)的频率及MDSCs与肝功能、慢性乙型肝炎病毒(HBV)感染之间的相关性。

方法

选择2019年3月至2019年10月于广州市第一人民医院住院或门诊就诊且未接受抗病毒治疗的30例CHB患者作为CHB患者组,同时选取同一时间段的14名健康体检者作为健康对照组。分别采用流式细胞仪(FCM)检测CHB患者组和健康对照组患者的外周血单个核细胞(PBMCs)中MDSCs的频率,对两组MDSCs频率的差异进行了组间t检验比较分析。分别用干化学法和全自动生化分析仪测定两组血清谷丙转氨酶(ALT)和谷草转氨酶(AST);采用聚合酶链式反应(PCR)对两组HBV-DNA载量进行检测。Spearman相关分析MDSCs与HBV-DNA载量、ALT和AST的相关性。

结果

CHB患者组的MDSCs频率(2.347%)高于健康对照组(0.929%),差异有统计学意义(P=0.002)。CHB患者HBeAg阳性组和阴性组的MDSCs频率比较,差异无统计学意义(P=0.170)。CHB患者MDSCs频率与ALT、AST呈负相关(r=-0.319、r=-0.214,均P<0.05),但MDSCs频率与HBV-DNA载量无相关性(r=-0.154,P=0.742)。

结论

CHB患者组MDSCs频率高于健康对照组,且与ALT、AST呈负相关,提示MDSCs在CHB患者外周血中募集增多,可能与CHB感染的慢性炎症相关。

Objective

To investigate the frequency of myeloid-derived suppressor cells (MDSCs) in peripheral blood of patients with chronic hepatitis B (CHB) and the correlation between MDSCs, liver function and chronic hepatitis B virus(HBV) infection.

Methods

30 CHB patients who were hospitalized or outpatient in Guangzhou First People's Hospital from March 2019 to October 2019 and did not receive antiviral therapy were selected as the CHB patient group, and 14 healthy person who underwent physical examination during the same period selected as the healthy control group. Flow cytometer (FCM) was used to detect the frequency of MDSCs in peripheral blood mononuclear cells (PBMCs) of CHB patients and healthy controls. At the same time, the HBV-DNA load of the two groups was detected by polymerase chain reaction (PCR). Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured by dry chemical method and automatic biochemical analyzer. Group t-test was used to compare and analyze the frequency of MDSCs between the two groups. Spearman correlation was used to analyze the correlation between MDSCs and HBV-DNA load, ALT and AST.

Results

The frequency of MDSCs in CHB group was 2.347%, substantially higher than that in control group (0.929%), and the difference was statistically significant (P=0.002). There was no significant difference in the frequency of MDSCs between HBeAg positive and negative groups in CHB patients (P=0.170). The frequency of MDSCs was negatively correlated with ALT and AST in CHB patients (r=-0.319 or -0.214, all P<0.05), but there was no correlation between the frequency of MDSCs and HBV-DNA load (r=-0.649, P=0.115).

Conclusions

The frequency of MDSCs in CHB patients was significantly higher than that in healthy controls, and negatively correlated with ALT and AST, suggesting that the increased recruitment of MDSCs in peripheral blood of CHB patientsmay be related to the chronic inflammation of CHB infection.

图1 CHB患者组与健康对照组外周血MDSCs频率比较
图2 CHB患者HBeAg与MDSCs频率的关系
图3 CHB患者外周血中MDSCs频率与ALT、AST水平相关性 注:3A:ALT;3B:AST
图4 CHB患者MDSCs频率与HBV-DNA的相关性
1
Yi TT, Zhang HY, Liang H, et al. Betaine-assisted recombinase polymerase assay for rapid hepatitis B virus detection[J]. Biotechnol Appl Biochem, 2021, 68(3): 469-475.
2
Chuang YC, Tsai KN, Ou JJ. Pathogenicity and virulence of hepatitis B virus[J]. Virulence, 2022, 13(1): 258-296.
3
Ito H, Kanbe A, Hara A, et al. Induction of humoral and cellular immune response to HBV vaccine can be up-regulated by STING ligand[J]. Virology, 2019, 531: 233-239.
4
Chen S, Akbar SM, Abe M, et al. Immunosuppressive functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus[J]. Clin Exp Immunol, 2011, 166(1): 134-42.
5
中华医学会肝病学分会. 慢性乙型肝炎诊断标准(2015年版)[J]. 中西医结合肝病杂志, 2015, 25(6): 384-384.
6
Ko JS, Bukowski RM, Fincke JH. Myeloid-derived suppressor cells: a novel therapeutic target[J]. Curr Oncol Rep, 2009, 11(2): 87-93.
7
Vanha-Aho LM, Valanne S, Rämet M. Cytokines in drosophila immunity[J]. Immunol Lett, 2016, 170: 42-51.
8
Xie J, Zhang Y, Jiang L. Role of interleukin-1 in the pathogenesis of colorectal cancer: A brief look at anakinra therapy[J]. Int Immunopharmacol, 2022, 105: 108577.
9
Smith JA. Regulation of cytokine production by the unfolded protein response;Implications for infection and autoimmunity[J]. Front Immunol, 2018, 9: 422.
10
Young HA, Ortaldo J. Cytokines as critical co-stimulatory molecules in modulating the immune response of natural killer cells[J]. Cell Res, 2006, 16(1): 20-24.
11
Zheng X, Wu Y, Bi J, et al. The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy[J]. Cell Mol Immunol, 2022, 19(2): 192-209.
12
Abd-Ellatieff H, Anwar S, Abas O, et al. Correlation of immunomodulatory cytokine expression with histopathological changes and viral antigen in a hamster model of equine herpesvirus-9 encephalitis[J]. J Comp Pathol, 2020, 180: 46-54.
13
Li X, Li Y, Yu Q, et al. Metabolic reprogramming of myeloid-derived suppressor cells: An innovative approach confronting challenges[J]. J Leukoc Biol, 2021, 110(2): 257-270.
14
Tian X, Ma J, Wang T, et al. Long non-coding RNA RUNXOR accelerates MDSC-mediated immunosuppression in lung cancer[J]. BMC Cancer, 2018, 18(1): 660.
15
Sahakian E, Powers JJ, Chen J, et al. Histone deacetylase 11: A novel epigenetic regulator of myeloid derived suppressor cell expansion and function[J]. Mol Immunol, 2015, 63(2): 579-585.
16
Yan J, Li A, Chen X, et al. Glycolysis inhibition ameliorates brain injury after ischemic stroke by promoting the function of myeloid-derived suppressor cells[J]. Pharmacol Res, 2022, 179: 106208.
17
Ma C, Zhang Q, Greten TF. MDSCs in liver cancer: A critical tumor-promoting player and a potential therapeutic target[J]. Cell Immunol, 2021, 361: 104295.
18
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol, 2009, 9(3): 162-174.
19
范舒萍, 王艳红, 赵永华, 等. 髓样抑制细胞在自身免疫性肝炎小鼠模型中的变化及其意义[J]. 免疫学杂志, 2013, 29(5): 387-390.
20
Tacke RS, Lee HC, Goh C, et al. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species[J]. Hepatology, 2012, 55(2): 343-353.
21
陆丽蓉, 刘静, 李德昌, 等. 髓源性抑制细胞在慢性乙型肝炎患者外周血中的表达及作用[J]. 中华传染病杂志, 2014, 32(3):144-149.
22
Lv Y, Cui M, Lv Z, et al. Expression and significance of peripheral myeloid-derived suppressor cells in chronic hepatitis B patients[J]. Clin Res Hepatol Gastroenterol, 2018, 42(5): 462-469.
23
Zeng Y, Li Y, Xu Z, et al. Myeloid-derived suppressor cells expansion is closely associated with disease severity and progression in HBV-related acute-on-chronic liver failure[J]. J Med Virol, 2019, 91(8): 1510-1518.
24
Anbar HS, Shehab NG, El-Rouby NMM, et al. Upadacitinib protects against cisplatin-induced renal and hepatic dysfunction without impairing its anticancer activity[J]. Eur J Pharm Sci, 2022, 172: 106149.
25
Ilkovitch D, Lopez DM. The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression[J]. Cancer Res, 2009, 69(13): 5514-21.
26
Baudi I, Isogawa M, Moalli F, et al. Interferon signaling suppresses the unfolded protein response and induces cell death in hepatocytes accumulating hepatitis B surface antigen[J]. PLoS Pathog, 2021, 17(5): e1009228.
27
Hoechst B, Ormandy LA, Ballmaier M, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells[J]. Gastroenterology, 2008, 135(1): 234-243.
28
Garrido-Trigo A, Salas A. Molecular structure and function of janus kinases: Implications for the development of inhibitors[J]. J Crohns Colitis, 2020, 14(Supplement 2): S713-S724.
29
Nagaraj S, Schrum AG, Cho HI, et al. Mechanism of T cell tolerance induced by myeloid-derived suppressor cells[J]. J Immunol, 2010, 184(6): 3106-3116.
30
Greifenberg V, Ribechini E, Rössner S, et al. Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development[J]. Eur J Immunol, 2009, 39(10): 2865-76.
[1] 李沁园, 董常峰, 冯程, 李志艳, 刘李, 何秉昊, 姜伟, 田文硕, 杨帅. 基于弹性成像多模态法评估慢性乙型肝炎肝纤维化程度[J]. 中华医学超声杂志(电子版), 2022, 19(09): 976-982.
[2] 施娜, 邱文倩, 何丹青, 张超学, 毛萍, 杨艳婷. 瞬时弹性成像评价慢性乙型肝炎患者抗病毒治疗的效果[J]. 中华医学超声杂志(电子版), 2022, 19(05): 428-433.
[3] 梁冬梅, 王燕, 戴峻. 调节性T细胞与子宫内膜异位症关系的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(06): 627-633.
[4] 金俊俊, 李平松, 徐刚, 罗艺, 马乐. 亲属间异体皮肤移植的免疫耐受机制[J]. 中华损伤与修复杂志(电子版), 2018, 13(01): 72-74.
[5] 徐鹏飞, 邓慧玲, 王小燕, 张瑜, 王军, 张玉凤, 唐甜甜, 袁娟, 宋鹤. 六例慢性乙型肝炎儿童患者抗病毒治疗短期疗效[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(06): 518-522.
[6] Mindie H. Nguyen. 慢性乙型肝炎孕妇妊娠期及产后的管理(上)[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(03): 264-264.
[7] 崔键, 戴庆. 基于肝囊型包虫病所致过敏反应模型研究Treg细胞数量比例与过敏反应的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 427-430.
[8] 张星哲, 郑秉暄, 邓格, 豆猛, 石玉婷, 卫田, 郭映聪, 韩锋, 赵艳龙, 丁晨光, 田普训. 髓源性抑制细胞通过抑制炎症反应减轻小鼠肾脏缺血再灌注损伤[J]. 中华移植杂志(电子版), 2023, 17(01): 42-46.
[9] 张修源, 吕军好, 陈大进. 2022年肾移植领域研究进展[J]. 中华移植杂志(电子版), 2023, 17(01): 32-35.
[10] 于长江, 赵敏杰, 龚建平. 库普弗细胞在肝移植中的作用研究进展[J]. 中华移植杂志(电子版), 2022, 16(05): 314-318.
[11] 刘桦, 陈雅峻, 龚建平. 调节性T细胞在肝移植免疫诱导及治疗中的作用[J]. 中华移植杂志(电子版), 2021, 15(04): 239-243.
[12] 王祥慧. 2018 ATC/TTS器官移植前沿热点回顾及进展概述[J]. 中华移植杂志(电子版), 2019, 13(01): 34-40.
[13] 唐家琢, 李满, 王卫星, 余佳. Treg在肝移植受者免疫耐受中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2021, 10(03): 337-339.
[14] 尹丹萍, 陈春明. 替诺福韦酯与恩替卡韦在治疗慢性乙型肝炎的安全性与有效性的荟萃分析[J]. 中华消化病与影像杂志(电子版), 2018, 08(01): 24-28.
[15] 韦慧萍, 郭瑛明, 刘桂荣, 巫宗由, 翁秋青. 超氧化物歧化酶检测在乙型肝炎病毒相关性肝病中的应用价值[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 21-26.
阅读次数
全文


摘要