切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2022, Vol. 10 ›› Issue (04) : 215 -221. doi: 10.3877/cma.j.issn.2095-5820.2022.04.005

实验研究

干扰素调节因子3引导RNA真核表达载体的构建
鞠思雨1, 侯卓岩1, 王晰1, 姜生远1, 李佳起1, 吕海菲1, 刘文1, 张之勇1,()   
  1. 1. 250117 山东济南,山东第一医科大学临床与基础医学院
  • 收稿日期:2022-05-11 出版日期:2022-11-28
  • 通信作者: 张之勇
  • 基金资助:
    山东省医药卫生科技发展计划项目(202002050626); 国家自然科学基金青年科学基金(82100142); 2021年度国家级大学生创新创业训练计划项目(202110439059)

Construction of interferon regulatory factor 3 guided RNA eukaryotic expression vector

Siyu Ju1, Zhuoyan Hou1, Xi Wang1, Shengyuan Jiang1, Jiaqi Li1, Haifei Lyu1, Wen Liu1, Zhiyong Zhang1,()   

  1. 1. Shandong First Medical University (Shandong Academy Of Medical Sciences), Jinan Shandong 250117, China
  • Received:2022-05-11 Published:2022-11-28
  • Corresponding author: Zhiyong Zhang
引用本文:

鞠思雨, 侯卓岩, 王晰, 姜生远, 李佳起, 吕海菲, 刘文, 张之勇. 干扰素调节因子3引导RNA真核表达载体的构建[J]. 中华临床实验室管理电子杂志, 2022, 10(04): 215-221.

Siyu Ju, Zhuoyan Hou, Xi Wang, Shengyuan Jiang, Jiaqi Li, Haifei Lyu, Wen Liu, Zhiyong Zhang. Construction of interferon regulatory factor 3 guided RNA eukaryotic expression vector[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2022, 10(04): 215-221.

目的

通过构建干扰素调节因子3(IRF3)gRNA真核表达载体,研究IRF3介导的转录非依赖性细胞凋亡的分子机制。

方法

通过分析IRF3的分子结构,在CHOPCHOP网站设计IRF3分子gRNA的序列,并在pLenti-U6-gRNA-PGK-Neo表达载体上ClaI和NheI限制性内切酶的位点处设计两对引物,通过重叠延伸PCR法扩增生成IRF3 gRNA的表达模块,通过TA克隆的方法构建到pGM-simple T克隆载体中,然后用双酶切的方法将IRF3 gRNA的表达模块亚克隆构建到表达载体中,通过PCR和Sanger测序的方法筛选并鉴定pLenti-U6-IRF3-gRNA表达载体。

结果

在IRF3的BH3样结构域和C端磷酸化结构域之间获得IRF3的gRNA序列。通过重叠延伸PCR扩增得到IRF3 gRNA的表达模块,通过TA克隆得到克隆载体pGM-simple T-IRF3-gRNA。通过双酶切的方法,将IRF3 gRNA表达模块亚克隆至pLenti-U6-gRNA-PGK-Neo真核表达载体,通过Sanger测序鉴定最终得到pLenti-U6-IRF3-gRNA表达载体。

结论

通过重叠延伸法成功构建pLenti-U6-IRF3-gRNA表达载体,为研究IRF3诱导细胞凋亡的转录非依赖性分子机制奠定了基础。

Objective

To investigate the molecular mechanism of interferon regulatory factor 3(IRF3) mediated transcription-independent apoptotic by constructing IRF3 gRNA eukaryotic expression vector.

Methods

IRF3's structure was analyzed and IRF3 gRNA was designed at CHOPCHOP, two pairs of primers were designed at ClaI and NheI site of pLenti-U6-gRNA-PGK-Neo expression vector. IRF3 gRNA expression module was amplified by gene splicing by overlap extension PCR (SOE PCR), and constructed in pGM-simple T clonal vector, and was subcloned in pLenti-U6-gRNA-PGK-Neo expression vector by dual digestion and IRF3 gRNA expression module was verified by bacteria PCR and Sanger sequencing.

Results

IRF3 gRNA was acquired between BH3 like domain and C terminal phosphorylation sites. IRF3 gRNA expression module was generated by SOE PCR. pGM-simple T-IRF3-gRNA clonal vector was constructed with IRF3 gRNA expression module by TA clone. pLenti-U6-IRF3-gRNA expression vector was constructed by dual digestion, and verified by Sanger sequencing.

Conclusions

The pLenti-U6-IRF3-gRNA expression vector was successfully constructed by SOE PCR, which laid a solid foundation on study of IRF3 mediated transcription-independent apoptotic mechanism.

图1 干扰素调节因子3的蛋白质结构与IRF3 gRNA的位置设计注:紫色碱基序列为IRF3 gRNA序列,红色碱基显示IRF3 gRNA的PAM序列,黑色对应IRF3 C端的碱基序列和氨基酸序列,含有丝氨酸,苏氨酸磷酸化受体群,蓝色氨基酸序列显示IRF3 IAD结构域中的SH3样结构域。IRF3 gRNA的序列在IRF3基因组中位于BH3样结构域与C端磷酸化受体群之间
图2 重叠延伸PCR法构建IRF3 gRNA的表达模块注:gRNA表达模块由U6启动子,gRNA序列,gRNA骨架序列三部分组成,在其上下游的酶切位点处设计引物A和D;IRF3 gRNA的位置设计重叠延伸引物B和C
表1 重叠延伸PCR法设计IRF3gRNA的引物序列
图3 重叠延伸PCR获取IRF3 gRNA表达模块与克隆载体pGM-simple T-IRF3-gRNA的筛选注:3A:重叠延伸PCR扩增生成IRF3 gRNA的表达模块;1.引物A和D对IRF3 gRNA的DNA序列的扩增产生475 bp片段;2.引物A和B对表达载体pLenti-U6-gRNA-PGK-Neo的扩增产生378 bp片段;3.引物C和D对表达载体pLenti-U6-gRNA-PGK-Neo的扩增产生114 bp片段;4. DL1000 DNA Marker。3B:克隆载体的筛选;1~10.通过引物A和D对十个克隆的筛选;11.DL2000 DNA Marker
图4 表达载体的构建与鉴定注:4A:利用ClaI和NheI双酶切pLenti-U6-gRNA-PGK-Neo表达载体,并回收线性化载体;1. pLenti-U6-gRNA-PGK-Neo表达载体经ClaI和NheI双酶切产生7400 bp的线性化载体;2. DL 15000 DNA Marker;3.未酶切的表达载体对照组质粒。4B:利用ClaI和NheI双酶切克隆载体pGM-simple T-IRF3-gRNA,并回收IRF3 gRNA表达模块;1.克隆载体经ClaI和NheI双酶切后产生475 bp的IRF3 gRNA;2. DL 2000 DNA Marker。4C:IRF3 gRNA的Sanger测序结果;灰色阴影区域显示测序结果与IRF3 gRNA的插入序列相一致
1
Al Hamrashdi M, Brady G. Regulation of IRF3 activation in human antiviral signaling pathways[J]. Biochem Pharmacol, 2022, 200: 115026.
2
Chathuranga K, Weerawardhana A, Dodantenna N, et al. Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing[J]. Exp Mol Med, 2021, 53(11): 1647-1668.
3
Liu S, Cai X, Wu J, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation[J]. Science, 2015, 347(6227): aaa2630.
4
Chattopadhyay S, Marques JT, Yamashita M, et al. Viral apoptosis is induced by IRF-3-mediated activation of Bax[J]. EMBO J, 2010, 29(10): 1762-1773.
5
Chattopadhyay S, Sen GC. IRF-3 and Bax: a deadly affair[J]. Cell Cycle 2010, 9(13): 2479-2480.
6
Hu LF, Li YX, Wang JZ, et al. Controlling CRISPR-Cas9 by guide RNA engineering[J]. Wiley Interdiscip Rev RNA, 2022: e1731.
7
Bellingham J, Gregory-Evans K, Gregory-Evans CY. Mapping of human interferon regulatory factor 3 (IRF3) to chromosome 19q13.3-13.4 by an intragenic polymorphic marker[J]. Ann Hum Genet, 1998, 62(Pt 3): 231-234.
8
Qin BY, Liu C, Lam SS, et al. Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation[J]. Nat Struct Biol, 2003, 10(11): 913-921.
9
Takahasi K, Suzuki NN, Horiuchi M, et al. X-ray crystal structure of IRF-3 and its functional implications[J]. Nat Struct Biol, 2003, 10(11): 922-927.
10
Hiscott J. Triggering the innate antiviral response through IRF-3 activation[J]. J Biol Chem, 2007, 282(21): 15325-15329.
11
Suhara W, Yoneyama M, Kitabayashi I, et al. Direct involvement of CREB-binding protein/p300 in sequence-specific DNA binding of virus-activated interferon regulatory factor-3 holocomplex[J]. J Biol Chem, 2002, 277(25): 22304-22313.
12
Weaver BK, Kumar KP, Reich NC. Interferon regulatory factor 3 and CREB-binding protein/p300 are subunits of double-stranded RNA-activated transcription factor DRAF1[J]. Mol Cell Biol, 1998, 18(3): 1359-1368.
13
Zierhut C, Yamaguchi N, Paredes M, et al. The cytoplasmic DNA sensor cGAS promotes mitotic cell death[J]. Cell, 2019, 178(2): 302-315 e23.
14
Chattopadhyay S, Sen GC. RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA): a new antiviral pathway[J]. Protein Cell, 2017, 8(3): 165-168.
15
Chattopadhyay S, Fensterl V, Zhang Y, et al. Role of interferon regulatory factor 3-mediated apoptosis in the establishment and maintenance of persistent infection by Sendai virus[J]. J Virol, 2013, 87(1): 16-24.
16
Chattopadhyay S, Yamashita M, Zhang Y, et al. The IRF-3/Bax-mediated apoptotic pathway, activated by viral cytoplasmic RNA and DNA, inhibits virus replication[J]. J Virol, 2011, 85(8): 3708-3716.
17
White CL, Chattopadhyay S, Sen GC. Phosphatidylinositol 3-kinase signaling delays sendai virus-induced apoptosis by preventing XIAP degradation[J]. J Virol, 2011, 85(10): 5224-5227.
18
Chattopadhyay S, Kuzmanovic T, Zhang Y, et al. Ubiquitination of the transcription factor IRF-3 activates RIPA, the apoptotic pathway that protects mice from viral pathogenesis[J]. Immunity, 2016, 44(5): 1151-1161.
19
Peters K, Chattopadhyay S, Sen GC. IRF-3 activation by Sendai virus infection is required for cellular apoptosis and avoidance of persistence [J]. J Virol, 2008, 82(7): 3500-3508.
20
Cui YY, Zhao D, Sreevatsan S, et al. Mycobacterium bovis induces endoplasmic reticulum stress mediated-Apoptosis by activating IRF3 in a murine Macrophage cell line[J]. Front Cell Infect Microbiol, 2016, 6: 182.
21
Glanz A, Chawla K, Fabry S, et al. High throughput screening of FDA-approved drug library reveals the compounds that promote IRF3-mediated pro-apoptotic pathway inhibit virus replication[J]. Viruses, 2020, 12(4): 442.
22
Jiao S, Guan J, Chen M, et al. Targeting IRF3 as a YAP agonist therapy against gastric cancer[J]. J Exp Med, 2018, 215(2): 699-718.
23
Glanz A, Chakravarty S, Varghese M, et al. Transcriptional and non-transcriptional activation, posttranslational modifications, and antiviral functions of Interferon Regulatory Factor 3 and viral antagonism by the SARS-Coronavirus[J]. Viruses, 2021, 13(4): 575.
24
Petrasek J, Iracheta-Vellve A, Csak T, et al. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease[J]. Proc Natl Acad Sci USA, 2013, 110(41): 16544-16549.
25
Sanz-Garcia C, Poulsen KL, Bellos D, et al. The non-transcriptional activity of IRF3 modulates hepatic immune cell populations in acute-on-chronic ethanol administration in mice[J]. J Hepatol, 2019, 70(5): 974-984.
26
Zhang T, Zhang K, Ji K, et al. MicroRNA-365 inhibits YAP through TLR4-mediated IRF3 phosphorylation and thereby alleviates gastric precancerous lesions[J]. Cancer cell Int, 2020, 20(1): 549.
27
Wu J, Leng X, Pan Z, et al. Overexpression of IRF3 predicts poor prognosis in Clear Cell Renal Cell Carcinoma[J]. Int J Gen Med, 2021, 14: 5675-5692.
28
Bakhoum MF, Francis JH, Agustinus A, et al. Loss of polycomb repressive complex 1 activity and chromosomal instability drive uveal melanoma progression[J]. Nat Commun, 2021, 12(1): 5402.
29
Mei Y, Cai D, Dai X. Modulating cancer stemness provides luminal a breast cancer cells with HER2 positive-like features[J]. J Cancer, 2020, 11(5): 1162-1169.
30
Li J, Ouyang J, Yuan J, et al. Establishment and evaluation of an overlap extension polymerase chain reaction technique for rapid and efficient detection of drug-resistance in Mycobacterium Tuberculosis[J]. Infect Dis Pverty, 2022, 11(1): 31.
No related articles found!
阅读次数
全文


摘要