切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2023, Vol. 11 ›› Issue (01) : 45 -51. doi: 10.3877/cma.j.issn.2095-5820.2023.01.009

综述

外泌体在慢性阻塞性肺疾病中的作用
王敏1, 张妍2, 王盈熹2, 赵龙2,(), 夏书月2,()   
  1. 1. 116044 辽宁大连,大连医科大学研究生院
    2. 110024 辽宁沈阳,沈阳医学院附属中心医院呼吸科
  • 收稿日期:2022-05-25 出版日期:2023-02-28
  • 通信作者: 赵龙, 夏书月
  • 基金资助:
    辽宁省省直医院改革重点临床科室诊疗能力建设项目(LNCCC-D14-2015); 沈阳市科技计划项目(17-230-9-05); 沈阳市科技计划项目(20-205-4-073); 沈阳医学院硕士研究生科技创新基金项目(Y20210516)

The roles of exosomes in chronic obstructive pulmonary disease

Min Wang1, Yan Zhang2, Yingxi Wang2, Long Zhao2,(), Shuyue Xia2,()   

  1. 1. Graduate School of Dalian Medical University, Dalian Liaoning 116044, China
    2. Department of Respiratory Medicine, the Center Hospital Affiliated to Shenyang Medical College, Shenyang Liaoning 110024, China
  • Received:2022-05-25 Published:2023-02-28
  • Corresponding author: Long Zhao, Shuyue Xia
引用本文:

王敏, 张妍, 王盈熹, 赵龙, 夏书月. 外泌体在慢性阻塞性肺疾病中的作用[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 45-51.

Min Wang, Yan Zhang, Yingxi Wang, Long Zhao, Shuyue Xia. The roles of exosomes in chronic obstructive pulmonary disease[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2023, 11(01): 45-51.

慢性阻塞性肺疾病(COPD)在全球范围内的发病率和死亡率均很高,其特征是慢性炎症和进行性气流阻塞。目前未有药物治疗被证明可以提高COPD患者的存活率。近年来外泌体因参与炎性反应、免疫调节和损伤修复等成为研究热点,同时有研究发现外泌体与COPD的发生发展密切相关。本综述介绍了外泌体的生物学特性、成分和功能,进而列举了外泌体在COPD的生物标志物方面及发病机制中的相关研究,阐明了外泌体在辅助临床诊断和治疗呼吸系统疾病方面的最新进展。希望为呼吸系统疾病的诊疗带来新的思考。

Chronic obstructive pulmonary disease (COPD) has a high morbidity and mortality worldwide and is characterized by chronic inflammation and progressive airflow obstruction. At present, no drug treatment has been proved to improve the survival rate of COPD patients. In recent years, exosomes have become a research hotspot due to their involvement in inflammatory response, immune regulation and injury repair. At the same time, studies have found that exosomes are closely related to the occurrence and development of COPD. This review first introduced the biological characteristics components and functions of exosomes, and then lists the relevant studies on exosomes in COPD biomarkers and pathogenesis, and finally clarifies the latest progress of exosomes in clinical diagnosis and treatment of respiratory diseases.

图1 外泌体治疗呼吸系统疾病的相关临床研究注:Lung cancer代表肺癌;COVID-19代表新型冠状病毒肺炎;COPD代表慢性阻塞性肺疾病;OSAS代表睡眠呼吸暂停综合征;ALI代表急性肺损伤;ARDS代表急性呼吸窘迫综合征;Asthma代表支气管哮喘;Others代表其他。
1
PAPAIOANNOU A I, MAZIOTI A, KIROPOULOS T, et al. Systemic and airway inflammation and the presence of emphysema in patients with COPD[J]. Respiratory Medicine, 2010, 104(2): 275-282.
2
LABAKI W W, ROSENBERG S R. Chronic obstructive pulmonary disease[J]. Annals of Internal Medicine, 2020, 173(3): ITC17-ITC32.
3
ISAAC R, REIS F C G, YING W, et al. Exosomes as mediators of intercellular crosstalk in metabolism[J]. Cell Metabolism, 2021, 33(9): 1744-1762.
4
KHATRI M, RICHARDSON L A, MEULIA T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model[J]. Stem Cell Research and Therapy, 2018, 9(1): 17.
5
AHN S Y, PARK W S, KIM Y E, et al. Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury[J]. Experimental and Molecular Medicine, 2018, 50(4): 1-12.
6
KAUR G, MAREMANDA K P, CAMPOS M, et al. Distinct exosomal miRNA Profiles from BALF and Lung Tissue of COPD and IPF patients[J]. International Journal of Molecular Sciences, 2021, 22(21): 11830.
7
KALLURI R, LEBLEU V S. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
8
ZHANG Y, LIU Y, LIU H, et al. Exosomes: biogenesis, biologic function and clinical potential[J]. Cell and Bioscience, 2019, 15(9): 19.
9
VLASSOV A V, MAGDALENO S, SETTERQUIST R, et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials[J]. Biochimica et Biophysica Acta, 2012, 1820(7): 940-948.
10
RAPOSO G, STOORVOGEL W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. The Journal of Cell Biology, 2013, 200(4): 373-383.
11
KOSAKA N, IGUCHI H, YOSHIOKA Y, et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells[J]. The Journal of Biological Chemistry, 2010, 285(23): 17442-17452.
12
JAENISCH R, BIRD A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals[J]. Nature Genetics, 2003, 33 Suppl: 245-254.
13
GUAN S, LI Q, LIU P, et al. Umbilical cord blood-derived dendritic cells loaded with BGC823 tumor antigens and DC-derived exosomes stimulate efficient cytotoxic T-lymphocyte responses and antitumor immunity in vitro and in vivo[J]. Central-European Journal of Immunology, 2014, 39(2): 142-151.
14
MULCAHY L A, PINK R C, CARTER D R. Routes and mechanisms of extracellular vesicle uptake[J]. Journal of Extracellular Vesicles. 2014, 3.
15
GURUNG S, PEROCHEAU D, TOURAMANIDOU L, et al. The exosome journey: from biogenesis to uptake and intracellular signalling[J]. Cell Communication and Signaling: CCS, 2021, 19(1): 47.
16
LÄSSER C, O'NEIL S E, SHELKE G V, et al. Exosomes in the nose induce immune cell trafficking and harbour an altered protein cargo in chronic airway inflammation[J]. Journal of Translational Medicine, 2016, 14(1): 181.
17
PINNELL J R, CUI M, TIEU K. Exosomes in Parkinson disease[J]. Journal of Neurochemistry, 2021, 157(3): 413-428.
18
WANG B, ZHANG A, WANG H, et al. MiR-26a limits muscle wasting and cardiac fibrosis through exosome-mediated microRNA transfer in chronic Kidney disease[J]. Theranostics, 2019, 9(7): 1864-1877.
19
JEFFRIES J, ZHOU W, HSU A Y, et al. MiRNA-223 at the crossroads of inflammation and cancer[J]. Cancer Letters, 2019, 451: 136-141.
20
MOHAN A, AGARWAL S, CLAUSS M, et al. Extracellular vesicles: novel communicators in lung diseases[J]. Respiratory Research, 2020, 21(1): 175.
21
BENEDIKTER B J, WOUTERS E F M, SAVELKOUL P H M, et al. Extracellular vesicles released in response to respiratory exposures: implications for chronic disease[J]. Journal of Toxicology and environmental health, Part B, Critical reviews, 2018, 21(3): 142-160.
22
VESTBO J, HURD S S, AGUSTÍ A G, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary[J]. American Journal of Respiratory and Critical Care Medicine. 2013, 187(4): 347-365.
23
LOWE K E, REGAN E A, ANZUETO A, et al. COPDGene® 2019: redefining the diagnosis of chronic obstructive pulmonary disease[J]. Chronic Obstructive Pulmonary Diseases, 2019, 6(5): 384-399.
24
CERVERI I, CORSICO A G, ACCORDINI S, et al. Underestimation of airflow obstruction among young adults using FEV1/FVC <70% as a fixed cut-off: a longitudinal evaluation of clinical and functional outcomes[J]. Thorax, 2008, 63(12): 1040-1045.
25
JUNG A L, MØLLER JØRGENSEN M, BÆK R, et al. Surface proteome of plasma extracellular vesicles as biomarkers for pneumonia and acute exacerbation of chronic obstructive pulmonary disease[J]. The Journal of Infectious Diseases, 2020, 221(2): 325-335.
26
TAKAHASHI T, KOBAYASHI S, FUJINO N, et al. Increased circulating endothelial microparticles in COPD patients: a potential biomarker for COPD exacerbation susceptibility[J]. Thorax, 2012, 67(12): 1067-1074.
27
TAN D B A, ARMITAGE J, TEO T H, et al. Elevated levels of circulating exosome in COPD patients are associated with systemic inflammation[J]. Respiratory Medicine, 2017 , 132: 261-264.
28
LI C J, LIU Y, CHEN Y, et al. Novel proteolytic microvesicles released from human macrophages after exposure to tobacco smoke[J]. The American Journal of Pathology, 2013, 182(5): 1552-1562.
29
LETSIOU E, SAMMANI S, ZHANG W, et al. Pathologic mechanical stress and endotoxin exposure increases lung endothelial microparticle shedding[J]. American Journal of Respiratory Cell and Molecular Biology, 2015, 52(2): 193-204.
30
HÉLIOT A, LANDKOCZ Y, ROY SAINT-GEORGES F, et al. Smoker extracellular vesicles influence status of human bronchial epithelial cells[J]. International Journal of Hygiene and Environmental Health, 2017, 220(2 Pt B): 445-454.
31
KAUR G, MAREMANDA K P, CAMPOS M, et al. Distinct exosomal miRNA profiles from BALF and Lung Tissue of COPD and IPF Patients[J]. International Journal of Molecular Sciences, 2021, 22(21): 11830.
32
MOON H G, KIM S H, GAO J, et al. CCN1 secretion and cleavage regulate the lung epithelial cell functions after cigarette smoke[J]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 2014, 307(4): L326-337.
33
WANG L, CHEN Q, YU Q, et al. Cigarette smoke extract-treated airway epithelial cells-derived exosomes promote M1 macrophage polarization in chronic obstructive pulmonary disease[J]. International Immunopharmacology, 2021, 96: 107700.
34
ZHU Z, LIAN X, SU X, et al. Exosomes derived from adipose-derived stem cells alleviate cigarette smoke-induced lung inflammation and injury by inhibiting alveolar macrophages pyroptosis[J]. Respiratory Research, 2022, 23(1): 5.
35
ZOU Y, BHAT O M, YUAN X, et al. Release and actions of inflammatory exosomes in pulmonary emphysema: potential therapeutic target of acupuncture[J]. Journal of Inflammation Research, 2021, 14: 3501-3521.
36
KIM Y S, CHOI J P, KIM M H, et al. IgG sensitization to extracellular vesicles in indoor dust is closely associated with the prevalence of non-eosinophilic asthma, COPD, and lung cancer[J]. Allergy Asthma and Immunology Research, 2016, 8(3): 198-205.
37
YANG J, KIM E K, PARK H J, et al. The impact of bacteria-derived ultrafine dust particles on pulmonary diseases[J]. Experimental and Molecular Medicine, 2020, 52(3): 338-347.
38
KIM Y S, LEE W H, CHOI E J, et al. Extracellular vesicles derived from gram-negative bacteria, such as escherichia coli, induce emphysema mainly via IL-17A-mediated neutrophilic inflammation[J]. The Journal of Immunology : Official Journal of the American Association of Immunologists, 2015, 194(7): 3361-3368.
39
王秋实. SP--D基因缺陷小鼠肺部病理和免疫改变及外泌体干预对肺修复作用的研究[D]. 济南: 山东大学, 2019.
40
KIM Y S, KIM J Y, CHO R, et al. Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway[J]. Experimental and Molecular Medicine, 2017, 49(1): e284.
41
GENSCHMER K R, RUSSELL D W, LAL C, et al. Activated PMN exosomes: pathogenic entities causing matrix destruction and disease in the Lung[J]. Cell, 2019, 176(1-2): 113-126. e15.
42
FUJITA Y, ARAYA J, ITO S, et al. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis[J]. Journal of Extracellular Vesicles, 2015, 4: 28388.
43
XU H, LING M, XUE J, et al. Exosomal microRNA-21 derived from bronchial epithelial cells is involved in aberrant epithelium-fibroblast cross-talk in COPD induced by cigarette smoking[J]. Theranostics, 2018, 8(19): 5419-5433.
44
HE S, CHEN D, HU M, et al. Bronchial epithelial cell extracellular vesicles ameliorate epithelial-mesenchymal transition in COPD pathogenesis by alleviating M2 macrophage polarization[J]. Nanomedicine, 2019, 18: 259-271.
45
TrialsClinical. National Library of Medicine; U.S: Gov. Exosome | respiratory diseases[EB/OL]. [2023-2-21].

URL    
46
TrialsClinical. National Library of Medicine; U.S: 2020. Gov. Trial of a Vaccination With Tumor Antigen-loaded Dendritic Cell-derived Exosomes (CSET 1437) [EB/OL]. [2023-2-21].

URL    
47
VIAUD S, PLOIX S, LAPIERRE V, et al. Updated technology to produce highly immunogenic dendritic cell-derived exosomes of clinical grade: a critical role of interferon-γ[J]. Journal of Immunotherapy, 2011, 34(1): 65-75.
48
BESSE B, CHARRIER M, LAPIERRE V, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC[J]. Oncoimmunology, 2015, 5(4): e1071008.
49
SENGUPTA V, SENGUPTA S, LAZO A, et al. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19[J]. Stem Cells and Development, 2020, 29(12): 747-754.
50
TrialsClinical. National Library of Medicine; U.S: 2020. Gov. Evaluation of safety and efficiency of method of exosome inhalation in SARS-CoV-2 associated pneumonia (COVID-19EXO)[EB/OL]. [2023-2-21].

URL    
51
SHI M M, YANG Q Y, MONSEL A, et al. Preclinical efficacy and clinical safety of clinical-grade nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles[J]. Journal of Extracellular Vesicles, 2021, 10(10): e12134.
52
Clinical Trials. National Library of Medicine; U.S: 2020. Gov. The Individualized accurate diagnosis and treatment of chronic objective pulmonary disease(COPD) aPtients based on multidimensional data (COPD)[EB/OL]. [2023-2-21].

URL    
[1] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[2] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[3] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[4] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[5] 周东杰, 蒋敏, 范海瑞, 高玲玲, 孔祥, 卢丹, 王丽萍. 非编码RNA在卵泡发育成熟中作用及其机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 387-393.
[6] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[7] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[8] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[9] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[10] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[11] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[12] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[13] 孙培培, 张二明, 时延伟, 赵春燕, 宋萍萍, 张硕, 张克, 周玉娇, 赵璨, 闫维, 吴蓉菊, 宋丽萍, 郭伟安, 马石头, 安欣华, 包曹歆, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病患病情况及相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 711-719.
[14] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
[15] 郭芳芳, 李珉珉. 狼疮肾炎无创生物标志物的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 271-275.
阅读次数
全文


摘要