切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2023, Vol. 11 ›› Issue (02) : 65 -70. doi: 10.3877/cma.j.issn.2095-5820.2023.02.001

论著

抑制糖毒性通路对细胞线粒体功能障碍的影响和潜在意义
李少莹, 文莹, 贾翠萍, 张媛(), 邓伟豪()   
  1. 510623 广东广州,广州医科大学附属广州市妇女儿童医疗中心
  • 收稿日期:2022-09-30 出版日期:2023-05-28
  • 通信作者: 张媛, 邓伟豪
  • 基金资助:
    国家自然科学基金(82022033,81970437); 广州市市校(院)联合资助项目(202201020651)

The effect and implication of inhibiting glycotoxicity pathway on mitochondrial dysfunction

Shaoying Li, Ying Wen, Cuiping Jia, Yuan Zhang(), Weihao Deng()   

  1. Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong 510623, China
  • Received:2022-09-30 Published:2023-05-28
  • Corresponding author: Yuan Zhang, Weihao Deng
引用本文:

李少莹, 文莹, 贾翠萍, 张媛, 邓伟豪. 抑制糖毒性通路对细胞线粒体功能障碍的影响和潜在意义[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 65-70.

Shaoying Li, Ying Wen, Cuiping Jia, Yuan Zhang, Weihao Deng. The effect and implication of inhibiting glycotoxicity pathway on mitochondrial dysfunction[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2023, 11(02): 65-70.

目的

探讨不同糖毒性抑制途径对细胞线粒体的影响,为糖尿病血管并发症提供新的治疗策略。

方法

采用高糖刺激人脐静脉内皮细胞(HUVEC),分别在高糖刺激前后加入葡萄糖毒性途径抑制剂依帕司他、氮杂丝氨酸、氨基胍、索他霉素来抑制多元醇途径、己糖胺途径、晚期糖基化终末产物(AGE)和蛋白激酶C(PKC)通路。使用流式细胞仪分析测定HUVEC线粒体活性氧(ROS)水平,激光共聚焦显微镜观察线粒体分裂情况。

结果

采用高糖刺激,能明显升高HUVEC线粒体ROS水平及促进线粒体分裂;在高糖培养后,加入葡萄糖毒性途径抑制剂,细胞线粒体ROS水平和线粒体分裂无明显降低;然而在高葡萄糖刺激前,预先加入葡萄糖毒性途径抑制剂,能有效降低HUVEC中线粒体ROS水平和线粒体分裂情况。

结论

高糖刺激细胞线粒体分裂和ROS增加后,即使抑制糖毒性途径,也无法有效缓解细胞线粒体损伤。但是,当提前抑制糖毒性途径,细胞线粒体损伤可得到有效缓解。明确不同糖毒性抑制方式对细胞线粒体的影响,有望为糖尿病血管并发症的有效治疗提供更佳的治疗策略。

Objective

To explore the effects of various glycotoxicity pathway inhibitors on cellular mitochondria, and provide better therapeutic strategy for the effective treatment of diabetic vascular complications.

Methods

In this study, we inhibited polyol, hexosamine, AGE and PKC pathway with epalrestat, azaserine, aminoguanidine, sotrastaurin, respectively in human umbilical vein endothelial cell (HUVEC) before and after high glucose treatment. The mitochondria ROS was determined by flow cytometry and mitochondrial division was observed by confocal laser microscopy.

Results

The mitochondrial ROS and fragmentation of HUVEC were significantly increased by high glucose stimulation. After high glucose incubation, the mitochondrial ROS level and fragmentation did not decrease significantly. However, pre-addition of glucose-toxic pathway inhibitors before hyperglucose stimulation can effectively reduce mitochondrial ROS levels and mitochondrial division in HUVEC.

Conclusions

Inhibition of the glucotoxic pathway after high glucose stimulation cannot effectively alleviate mitochondrial damage. When the glycotoxic pathway is inhibited in advance, mitochondrial damage can be effectively alleviated. It is expected to provide better therapeutic strategies for the effective treatment of diabetic vascular complications by clarifying the effects of various glucotoxic pathway inhibitors on cellular mitochondria.

图1 HG诱导HUVEC线粒体ROS产生增加注:1A. 流式细胞术观察细胞MitoSOX;1B. 3组MitoSOX阳性细胞的百分比和线粒体平均荧光强度统计图,与HG组比较,aP<0.05;1C. Mito Tracker荧光探针着染线粒体,激光共聚焦显微镜观察线粒体形态改变;标尺为20 μmol/L。
图2 HG刺激后,加入依帕司他、氮杂丝氨酸、氨基胍和索曲霉素对HUVEC线粒体ROS生成的影响注:2A. 流式细胞术观察细胞MitoSOX;2B. 各组PE MitoSOX阳性细胞的百分比和线粒体平均荧光强度统计图,与NG组比较,aP<0.05;2C. Mito Tracker荧光探针着染线粒体,激光共聚焦显微镜观察线粒体形态改变;标尺为20 μmol/L。
图3 HG刺激前,加入依帕司他、氮杂丝氨酸、氨基胍和索他霉素对HUVEC线粒体ROS生成的影响注:3A. 流式细胞术观察细胞MitoSOX;3B. 各组PE MitoSOX阳性细胞的百分比和线粒体平均荧光强度统计图,与NG组比较,aP<0.05;3C. Mito Tracker荧光探针着染线粒体,激光共聚焦显微镜观察线粒体形态改变;标尺为20 μmol/L。
1
PANENI F, BECKMAN J A, CREAGER M A, et al. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part i[J]. European heart journal, 2013, 34: 2436-2443.
2
BROWNLEE M. The pathobiology of diabetic complications: A unifying mechanism[J]. Diabetes, 2005, 54: 1615-1625.
3
RAMASAMY R, GOLDBERG I J. Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model[J]. Circulation research, 2010, 106: 1449-1458.
4
ZHANG W, LIU J, TIAN L, et al. Trib3 mediates glucose-induced insulin resistance via a mechanism that requires the hexosamine biosynthetic pathway[J]. Diabetes, 2013, 62: 4192-4200.
5
SUGIYAMA S, MIYATA T, HORIE K, et al. Advanced glycation end-products in diabetic nephropathy[J]. Nephrology dialysis transplantation, 1996, 11 Suppl 5: 91-94.
6
GIACCO F, BROWNLEE M. Oxidative stress and diabetic complications[J]. Circulation research, 2010, 107: 1058-1070.
7
WADA J, NAKATSUKA A. Mitochondrial dynamics and mitochondrial dysfunction in diabetes[J]. Acta medica okayama, 2016, 70: 151-158.
8
REN L, HAN F, XUAN L, et al. Clusterin ameliorates endothelial dysfunction in diabetes by suppressing mitochondrial fragmentation[J]. Free radical biology and medicine, 2019, 145: 357-373.
9
YAMA K, SATO K, ABE N, et al. Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating nrf2 pathway in endothelial cells[J]. Redox biology, 2015, 4: 87-96.
10
DRYGALSKI K, FERENIEC E, ZALEWSKA A, et al. Phloroglucinol prevents albumin glycation as well as diminishes ros production, glycooxidative damage, nitrosative stress and inflammation in hepatocytes treated with high glucose[J]. Biomedicine and pharmacotherapy=Biomédecine and Pharmacothérapie, 2021, 142: 111958.
11
BHATTACHARYYA S, FEFERMAN L, TOBACMAN J K. Distinct effects of carrageenan and high-fat consumption on the mechanisms of insulin resistance in nonobese and obese models of type 2 diabetes[J]. Journal diabetes research, 2019: 9582714.
12
FORBES J M, COOPER M E. Mechanisms of diabetic complications[J]. Physiological reviews, 2013, 93: 137-188.
13
CADE W T. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting[J]. Physical therapy, 2008, 88: 1322-1335.
14
DEVASAGAYAM T P, TILAK J C, BOLOOR K K, et al. Free radicals and antioxidants in human health: Current status and future prospects[J]. The journal of the association of physicians of India, 2004, 52: 794-804.
15
WANG Q, ZHANG M, TORRES G, et al. Metformin suppresses diabetes-accelerated atherosclerosis via the inhibition of drp1-mediated mitochondrial fission[J]. Diabetes, 2017, 66: 193-205.
16
SORRENTINO V, MENZIES K J, AUWERX J. Repairing mitochondrial dysfunction in disease[J]. Annual review of pharmacology and toxicology, 2018, 58: 353-389.
17
ZINOVKIN R A, ROMASCHENKO V P, GALKIN I I, et al. Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium[J]. Aging, 2014, 6: 661-674.
18
CHAN D C. Fusion and fission: Interlinked processes critical for mitochondrial health[J]. Annual review of genetics, 2012, 46: 265-287.
19
YOULE R J, VAN DER BLIEK A M. Mitochondrial fission, fusion, and stress[J]. Science, 2012, 337: 1062-1065.
20
ZANDALINAS S I, MITTLER R. Ros-induced ros release in plant and animal cells[J]. Free radical biology and medicine, 2018, 122: 21-27.
21
ZOROV D B, JUHASZOVA M, SOLLOTT S J. Mitochondrial reactive oxygen species (ros) and ros-induced ros release[J]. Physiological reviews, 2014, 94: 909-950.
22
VÁSQUEZ-TRINCADO C, GARCÍA-CARVAJAL I, PENNANEN C, et al. Mitochondrial dynamics, mitophagy and cardiovascular disease[J]. The journal of physiology, 2016, 594: 509-525.
23
KRZYWANSKI D M, MOELLERING D R, WESTBROOK D G, et al. Endothelial cell bioenergetics and mitochondrial DNA damage differ in humans having african or west eurasian maternal ancestry[J]. Circulation cardiovascular genetics, 2016, 9:26-36.
24
ROSCA M G, HOPPEL C L. Mitochondrial dysfunction in heart failure[J]. Heart failure reviews, 2013, 18: 607-622.
25
ZONG W X, RABINOWITZ J D, WHITE E. Mitochondria and cancer[J]. Molecular cell, 2016, 61: 667-676.
26
CADONIC C, SABBIR M G, ALBENSI B C. Mechanisms of mitochondrial dysfunction in alzheimer's disease[J]. Molecular neurobiology, 2016, 53: 6078-6090.
27
BOSE A, BEAL M F. Mitochondrial dysfunction in Parkinson's disease[J]. Journal of neurochemistry, 2016, 139 Suppl 1: 216-231.
28
PATIL N K, PARAJULI N, LAMACMILLAN-CROW, et al. Inactivation of renal mitochondrial respiratory complexes and manganese superoxide dismutase during sepsis: Mitochondria-targeted antioxidant mitigates injury[J]. American journal of physiology renal physiology, 2014, 306: F734-743.
29
SONG Y, COOK N R, ALBERT C M, et al. Effects of vitamins c and e and beta-carotene on the risk of type 2 diabetes in women at high risk of cardiovascular disease: A randomized controlled trial[J]. The American journal of clinical nutrition, 2009, 90: 429-437.
30
SESSO H D, BURING J E, CHRISTEN W G, et al. Vitamins e and c in the prevention of cardiovascular disease in men: The physicians' health study ii randomized controlled trial[J]. The journal of the American medical association, 2008, 300: 2123-2133.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[3] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[4] 王洁, 丁泊文, 尹健. 糖尿病性乳腺病52例临床分析[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 285-289.
[5] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[6] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[7] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[8] 李琛, 张惟佳, 潘亚萍. 牙周炎与系统性疾病之间关系的应用思考:2022年EFP和WONCA欧洲分部联合研讨会共识报告的解读及启示[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 322-327.
[9] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[10] 孙文琦, 吴欣荣, 王运荣, 赵贝, 窦晓坛, 李雯, 邹晓平, 王雷, 陈敏. 结直肠上皮细胞ROS及FH检测对结直肠癌筛查的应用价值[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 326-330.
[11] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[12] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[13] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[14] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[15] 谢国晓, 赵凌霞, 薛雪花. 慢性病管理模式在糖尿病社区管理中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 587-590.
阅读次数
全文


摘要