切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2023, Vol. 11 ›› Issue (02) : 71 -78. doi: 10.3877/cma.j.issn.2095-5820.2023.02.002

论著

鱼藤酮通过降低线粒体钙离子单向转运体蛋白表达促进多巴胺能神经元铁死亡
谢艾伦, 郑冬燕, 蔡紫薇, 卢仁建, 彭永明, 张贺(), 陈家隆()   
  1. 523808 广东东莞,广东医科大学公共卫生学院预防医学系
  • 收稿日期:2022-11-06 出版日期:2023-05-28
  • 通信作者: 张贺, 陈家隆
  • 基金资助:
    国家自然科学基金(82103879); 广东省基础与应用基础研究基金联合基金粤莞培育项目(2021B1515140032); 广东省中医药局科研项目面上项目(20222104); 广东省“冲补强”广东医科大学学科建设项目(4SG22021G)

Rotenone promotes ferroptosis of dopaminergic neurons by reducing the expression of MCU protein

Ailun Xie, Dongyan Zheng, Ziwei Cai, Renjian Lu, Yongming Peng, He Zhang(), Jialong Chen()   

  1. Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan Guangdong 523808, China
  • Received:2022-11-06 Published:2023-05-28
  • Corresponding author: He Zhang, Jialong Chen
引用本文:

谢艾伦, 郑冬燕, 蔡紫薇, 卢仁建, 彭永明, 张贺, 陈家隆. 鱼藤酮通过降低线粒体钙离子单向转运体蛋白表达促进多巴胺能神经元铁死亡[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 71-78.

Ailun Xie, Dongyan Zheng, Ziwei Cai, Renjian Lu, Yongming Peng, He Zhang, Jialong Chen. Rotenone promotes ferroptosis of dopaminergic neurons by reducing the expression of MCU protein[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2023, 11(02): 71-78.

目的

研究线粒体钙离子单向转运体(MCU)参与调控鱼藤酮诱导多巴胺能神经元铁死亡的作用机制。

方法

运用免疫印迹试验和脂质氧化等试剂盒检测鱼藤酮处理细胞前后MCU蛋白表达水平及铁死亡水平,检测鱼藤酮干预同时上调MCU蛋白表达,铁死亡水平的变化。

结果

鱼藤酮处理后多巴胺能神经元谷胱甘肽(GSH)过氧化物酶-4、铁蛋白重链多肽1蛋白表达下降,胞内氧化应激水平上升;MCU蛋白表达下降,而恢复MCU蛋白表达水平后,铁死亡水平下降。

结论

鱼藤酮通过降低MCU蛋白表达促进多巴胺能神经元铁死亡。

Objective

To study the mechanism of mitochondrial calcium uniporter (MCU) in regulating rotenone induced ferroptosis in dopaminergic neurons.

Methods

Immunoblotting test and lipid oxidation kit were used to detect the expression of MCU protein and the level of ferroptosis before and after rotenone treatment. The changes of the expression of MCU protein and the level of ferroptosis after rotenone treatment were detected.

Results

After rotenone treatment, the expression of glutathione peroxidase - 4 and ferritin heavy chain polypeptide - 1 protein in dopaminergic neurons were decreased, and the level of intracellular oxidative stress was increased; the expression of MCU protein and the level of ferroptosis were decreased after the recovery of MCU protein expression.

Conclusions

Rotenone can promote ferroptosis of dopaminergic neurons by reducing the expression of MCU protein.

表1 小鼠黑质神经元SN4741细胞需要配制专用培养基
图1 鱼藤酮对小鼠多巴胺能神经元的影响注:1A. 鱼藤酮处理SN4741细胞24 h后TH、a-synclein蛋白表达变化(免疫印迹);1B. 与CTR组比较,aP<0.05。
图2 鱼藤酮对多巴胺能神经元铁死亡的影响注:2A-2B. 电镜下观察鱼藤酮处理前后SN4741线粒体形态的变化(标尺500 nm);2C-2D. 鱼藤酮处理SN4741细胞24 h后铁死亡相关蛋白表达变化;2E. 鱼藤酮处理SN4741细胞24 h后细胞MDA水平变化;2F. 鱼藤酮处理SN4741细胞24 h后细胞GSH水平变化。与CTR比较,aP<0.05。
图3 鱼藤酮对MCU蛋白表达的影响注:鱼藤酮处理SN4741细胞24 h后MCU蛋白表达变化。与CTR比较,aP<0.05。
图4 MCU对鱼藤酮诱导多巴胺能神经元铁死亡的影响注:4A-4D. 精胺(Sper)和过表达MCU处理SN4741细胞后MCU和铁死亡相关蛋白表达变化;4E-4F. 精胺(Sper)处理SN4741细胞24 h后细胞GSH和MDA水平变化;4G-4H. 过表达MCU处理SN4741细胞后细胞GSH和MDA水平变化。与Rot组比较,aP<0.05;与CTR组比较,bP<0.05。
1
BALL N, TEO W, CHANDRA S, et al. Parkinson's disease and the environment[J]. Encephalos, 2019, 10: 218.
2
GIBB W R. Neuropathology of Parkinson's disease and related syndromes[J]. Neurologic clinics, 1992, 10(2): 361-376.
3
TARAKAD A, JANKOVIC J. Diagnosis and management of Parkinson's Disease[J]. Seminars in neurology, 2017, 37(2): 118-126.
4
JANKOVIC J. Parkinson's disease: Clinical features and diagnosis[J]. Journal of neurology neurosurgery and psychiatry, 2008, 79(4): 368-376.
5
CHEN H, RITZ B. The search for environmental causes of Parkinson's disease: Moving forward[J]. Journal of Parkinsons disease, 2018, 8(s1): S9-S17.
6
TROJANOWSKI J Q. Rotenone neurotoxicity: A new window on environmental causes of Parkinson's disease and related brain amyloidoses[J]. Experimental neurology, 2003, 179(1): 6-8.
7
RICHARDSON J R, FITSANAKIS V, WESTERINK R H S, et al. Neurotoxicity of pesticides[J]. Acta neuropathologica, 2019, 138(3): 343-362.
8
BETARBET R, SHERER T B, MACKENZIE G, et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease[J]. Nature neuroscience, 2000, 3(12): 1301-1306.
9
CHEN Y, MCMILLAN-WARD E, KONG J, et al. Mitochondrial electron-transport-chain inhibitors of complexes I and Ⅱ induce autophagic cell death mediated by reactive oxygen species[J]. Journal of cell science, 2007, 120(Pt 23): 4155-4166.
10
SPIVEY A. Rotenone and paraquat linked to Parkinson's disease: Human exposure study supports years of animal studies[J]. Environmental health perspectives, 2011, 119(6): A259.
11
MAITRA U, CIESLA L. Using drosophila as a platform for drug discovery from natural products in Parkinson's disease[J]. Medchemcomm, 2019, 10(6): 867-879.
12
HONDA H M, KORGE P, WEISS J N. Mitochondria and ischemia/reperfusion injury[J]. Annals of the New York academy of sciences, 2005, 1047: 248-258.
13
SHADRINA M I, SLOMINSKII P A. Mitochondrial dysfunction and oxidative damages in the molecular pathology of Parkinson's disease[J]. Molecular biology (Mosk), 2008, 42(5): 809-819.
14
WU Y, ZHANG S, GONG X, et al. The epigenetic regulators and metabolic changes in ferroptosis-associated cancer progression[J]. Molecular cancer, 2020, 19(1): 39.
15
Do Van B, GOUEL F, JONNEAUX A, et al. Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC[J]. Neurobiology of disease, 2016, 94: 169-178.
16
PIZZO P, DRAGO I, FILADI R, et al. Mitochondrial Ca2+ homeostasis: Mechanism, role, and tissue specificities[J]. Pflügers Archiv: European journal of physiology, 2012, 464(1): 3-17.
17
BAUGHMAN J M, PEROCCHI F, GIRGIS H S, et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter[J]. Nature, 2011, 476(7360): 341-345.
18
CLAPHAM D E, KIRICHOK Y, KRAPIVINSKY G. The mitochondrial calcium uniporter is a highly selective ion channel[J]. Nature, 2004, 427(6972): 360-364.
19
ZOROV D B, JUHASZOVA M, SOLLOTT S J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiological reviews, 2014, 94(3): 909-950.
20
CAI Z, ZENG W, TAO K, et al. Myricitrin alleviates MPP(+)-induced mitochondrial dysfunction in a DJ-1-dependent manner in SN4741 cells[J]. Biochemical and biophysical research communications, 2015, 458(2): 227-233.
21
HEO H Y, PARK J M, KIM C H, et al. LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity[J]. Experimental cell research, 2010, 316(4): 649-656.
22
MANDEL S A, FISHMAN-JACOB T, YOUDIM M B. Genetic reduction of the E3 ubiquitin ligase element, SKP1A and environmental manipulation to emulate cardinal features of Parkinson's disease[J]. Parkinsonism and related disorders, 2012, 18 Suppl 1: S177-S179.
23
GUINEY S J, ADLARD P A, LEI P, et al. Fibrillar alpha-synuclein toxicity depends on functional lysosomes[J]. Journal of biological chemistry, 2020, 295(51): 17497-17513.
24
ZHANG L, GAO X, YUAN X, et al. Mitochondrial calcium uniporter opener spermine attenuates the cerebral protection of diazoxide through apoptosis in rats[J]. Journal of stroke and cerebrovascular diseases, 2014, 23(5): 829-835.
25
LIAO Y, HAO Y, CHEN H, et al. Mitochondrial calcium uniporter protein MCU is involved in oxidative stress-induced cell death[J]. Protein & cell, 2015, 6(6): 434-442.
26
PAN L, HUANG B J, MA X E, et al. MiR-25 protects cardiomyocytes against oxidative damage by targeting the mitochondrial calcium uniporter[J]. International journal of molecular sciences, 2015, 16(3): 5420-5433.
27
AYALA A, VENERO J L, CANO J, et al. Mitochondrial toxins and neurodegenerative diseases[J]. Frontiers in bioscience, 2007, 12: 986-1007.
28
GAKI G S, PAPAVASSILIOU A G. Oxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson's disease[J]. Neuromolecular medicine, 2014, 16(2): 217-230.
29
ZHAO M, CHEN J, MAO K, et al. Mitochondrial calcium dysfunction contributes to autophagic cell death induced by MPP(+) via AMPK pathway[J]. Biochemical and biophysical research communications, 2019, 509(2): 390-394.
30
WANG H, ZHAO M, CHEN J, et al. Mitochondrial calcium uniporter-mediated inhibition of 1-methyl-4-phenylpyridinium ions neurotoxicity in PC12 cells[J]. Neuroreport, 2018, 29(7): 570-576.
31
LI B, CHAUVIN C, DE PAULIS D, et al. Inhibition of complex I regulates the mitochondrial permeability transition through a phosphate-sensitive inhibitory site masked by cyclophilin D[J]. Biochim biophys acta, 2012, 1817(9): 1628-1634.
32
GIORDANO S, DODSON M, RAVI S, et al. Bioenergetic adaptation in response to autophagy regulators during rotenone exposure[J]. Journal of neurochemistry, 2014, 131(5): 625-633.
33
ZHANG J, STANTON D M, NGUYEN X V, et al. Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits[J]. Neuroscience, 2005, 135(3): 829-838.
34
YU L, WANG X, CHEN H, et al. Neurochemical and behavior deficits in rats with iron and rotenone co-treatment: Role of redox imbalance and neuroprotection by biochanin A[J]. Front neurosci, 2017, 11: 657.
35
ONYANGO I G, KHAN S M, BENNETT J P J R. Mitochondria in the pathophysiology of Alzheimer's and Parkinson's diseases[J]. Front biosci (Landmark Ed), 2017, 22(5): 854-872.
36
PANG S Y, HO P W, LIU H F, et al. The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson's disease[J]. Transl neurodegener, 2019, 8: 23.
[1] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[2] 莫建涛, 杨沛泽, 曹瑞奇, 马清涌, 王铮, 仵正, 周灿灿. 基于生物信息学分析构建肝内胆管细胞癌患者铁死亡相关lncRNA预后模型[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 185-189.
[3] 刘成飞, 徐少强, 姚添, 黄河. 谷胱甘肽在结直肠癌增殖转移及诊疗中的研究进展[J]. 中华结直肠疾病电子杂志, 2022, 11(06): 506-510.
[4] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[5] 李燕辰, 李建宁, 涂晓文, 李峰生. 核辐射导致急性肾损伤中铁死亡的作用研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 338-341.
[6] 阿迪莱·阿卜杜热西提, 费奥, 邢晓雯, 谢胜强, 张睿, 兰晓娟, 程岗. 三种模拟创伤性脑损伤体外细胞模型的损伤特征比较[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 69-75.
[7] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[8] 郑丽华, 钱一菁, 黄崇甄, 周春娜. 山茱萸环烯醚萜苷改善6-OHDA诱导帕金森病细胞模型的损伤[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(06): 324-331.
[9] 李玺琳, 章邱东. 帕金森病患者胃肠功能障碍特点及其风险因素分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 145-149.
[10] 耿磊, 张照婷, 许磊, 黄海, 孙毅, 杨伏猛, 徐凯, 胡春峰. 帕金森病前驱期基底神经节环路磁共振弥散张量成像的应用研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 995-1003.
[11] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[12] 杨团峰, 孟雪, 王艳香, 卢葭, 孔德生, 赵元立, 刘献增. 男性帕金森病患者球海绵体肌反射初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(01): 28-32.
[13] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[14] 李民昌, 马长林. 自噬调控的细胞铁死亡及在肿瘤中影响的研究进展[J]. 中华诊断学电子杂志, 2023, 11(02): 140-144.
[15] 韩远远, 于紫涵, 杨玲, 程弘禹, 宋春杰. C反应蛋白与白蛋白比值和中性粒细胞与淋巴细胞比值对老年帕金森病的诊断价值[J]. 中华老年病研究电子杂志, 2023, 10(01): 14-19.
阅读次数
全文


摘要