切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2024, Vol. 12 ›› Issue (04) : 204 -211,228. doi: 10.3877/cma.j.issn.2095-5820.2024.04.003

实验研究

H2N2 病毒插入新冠刺突蛋白基因探究PA 基因的包装信号边界
张丽嬴1, 陈诗婷1, 梁舒华2, 柯宏霞2, 宋文俊3,()   
  1. 1.510182 广东广州,广州医科大学金域检验学院
    2.510182 广东广州,广州医科大学中西医结合研究所
    3.510005 广东广州,广州实验室
  • 收稿日期:2024-05-29 出版日期:2024-11-28
  • 通信作者: 宋文俊
  • 基金资助:
    广东省大学生创新创业训练计划项目(S202310570036)2022 年度广州医科大学学生创新能力提升计划项目(02-408-2304-19055XM)

H2N2 virus inserts novel coronavirus spike protein gene to explore the packaging signal boundary of PA gene

Liying Zhang1, Shiting Chen1, Shuhua Liang2, Hongxia Ke2, Wenjun Song3,()   

  1. 1.KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou Guangdong 510182, China
    2.Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou Guangdong 510182, China
    3.Guangzhou Laboratory, Guangzhou Guangdong 510005, China
  • Received:2024-05-29 Published:2024-11-28
  • Corresponding author: Wenjun Song
引用本文:

张丽嬴, 陈诗婷, 梁舒华, 柯宏霞, 宋文俊. H2N2 病毒插入新冠刺突蛋白基因探究PA 基因的包装信号边界[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(04): 204-211,228.

Liying Zhang, Shiting Chen, Shuhua Liang, Hongxia Ke, Wenjun Song. H2N2 virus inserts novel coronavirus spike protein gene to explore the packaging signal boundary of PA gene[J/OL]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2024, 12(04): 204-211,228.

目的

本研究将外源新冠病毒刺突蛋白基因(RBD 基因)插入甲型流感病毒(IAV)的减毒活疫苗温敏冷适应病毒株A/Ann Arbor/6/1960(H2N2)聚合酶基因的PA 片段中,并重配H2N2 病毒的PA 包装信号来确定PA 基因的包装信号边界,以便基于边界序列构建可插入外源基因的H2N2 病毒载体。

方法

利用PCR 扩增A/Ann Arbor/6/1960(H2N2)病毒的8 个基因片段,利用反向遗传操作系统,将RBD 基因插入PA 基因,并通过每次增加或减少PA 基因包装信号序列的3 个碱基,重配PA 基因的包装信号。同时,为了完整表达出全长聚合酶基因和外源新冠刺突蛋白基因,在包装信号前依次插入无义突变包装信号序列、猪捷申病毒Ⅰ型2A 多肽序列和编码流感病毒密码子偏好的外源基因序列。利用连接酶将病毒的8 个基因片段与载体进行连接,构建每个基因片段的质粒;通过转染拯救重组病毒,同时利用MDCK 细胞扩增病毒,并在核酸水平鉴定病毒基因的完整性来判断是否破坏流感病毒的包装信号,从而确定流感病毒PA 基因的包装信号边界。

结果

共制备了11 个PA构建体,其编码的包装信号范围为108~138 bp(不包括终止密码子),并在八质粒IAV 拯救系统中成功拯救了包装序列分别为+12 bp +15 bp -6 bp -9 bp -12 bp -15 bp 的重组H2N2 病毒。

结论

本研究成功拯救了6 个重组流感病毒,构建了可插入外源基因的H2N2 载体。H2N2 重组病毒的包装信号区域与PR8 的包装信号区域略有不同,表明不同亚型之间的包装信号位置可不同。

Objective

In this study, the exogenous neocoronin gene (RBD gene) was inserted into the PA fragment of the polymerase gene of the temperature-sensitive cold-adapted virus strain A/Ann Arbor/6/1960(H2N2), a live attenuated vaccine of influenza A virus (IAV), and rewired the PA packaging signals of the H2N2 viruses to determine the boundary of the packaging signals of the PA genes, to construct H2N2 viral vectors that can be inserted into the exogenous genes based on the boundary sequence.

Methods

Using PCR to amplify 8 gene fragments of the A/Ann Arbor/6/1960(H2N2) virus, the RBD gene was inserted into the PA fragment in a reverse genetic manipulation system and the packaging signals of the PA genes were reassembled, that is, the packaging signal sequences of the polymerase genes were added or subtracted by 3 bases at a time. At the same time, in order to fully express the full length polymerase gene and the RBD gene, nonsense mutant packaging signals sequence, Porcine teschovirus-1 2A polypeptide sequence and exogenous gene sequence encoding influenza virus codon preference were inserted before packaging signal. Ligases were used to attach 8 gene fragments of the virus to the vector, and plasmids were constructed for each gene fragment. The recombinant virus was saved by transfection, and the MDCK cell was used to amplify the virus. The integrity of the virus gene was identified at the nucleic acid level to determine whether the packaging signal of influenza virus was damaged and the packaging signal boundary of influenza virus polymerase gene.

Results

A total of 11 PA constructs were created, encoding packaging signals ranging from 108~138 bp (excluding the stop codon). And the recombinant H2N2 viruses with packaging sequences of +12bp +15bp -6bp -9bp -12bp and -15bp were successfully rescued in the eight-plasmid IAV rescue system.

Conclusions

In this study, 6 recombinant influenza viruses are successfully rescued, that is, H2N2 vectors are successfully constructed that can insert exogenous genes. The packaging signal region of the recombinant H2N2 viruses is slightly different from that of PR8, suggesting that the location of packaging signals may differ between different subtypes.

表1 扩增甲型流感病毒基因片段所使用的PCR 引物
表2 重配包装信号时利用的PCR 引物及其序列
引物名称 正向 反向
3661
in GTCGTTCAGGCTCTTAGGGACAACCTCGAGCCAGGAACGTTCG AGGTTCAAGATTTTAAAGGAACACTGTTTGTTCTGCA
out GTGTTCCTTTAAAATCTTGAACCTGGGACCTTTGAT CGAACGTTCCTGGCTCGAGGTTGTCCCTAAGAGCCTGAACGAC
3662
in GTCGTTCAGGCTCTTAGGGATAACCTCGAGCCAGGAACGTTCG TTCAAGATTGTCTTAAAGGAACACTGTTTGTTCTGCA
out GTGTTCCTTTAAGACAATCTTGAACCTGGGACCTTTG CGAACGTTCCTGGCTCGAGGTTATCCCTAAGAGCCTGAACGAC
3663
in GTCGTTCAGGCTCTTAGAGATAACCTCGAGCCAGGAACGTTCG AAGATTGTCCCTTTAAAGGAACACTGTTTGTTCTGCA
out GTGTTCCTTTAAAGGGACAATCTTGAACCTGGGAC CGAACGTTCCTGGCTCGAGGTTATCTCTAAGAGCCTGAACGAC
3664
in GTCGTTCAGGCTCTCAGAGATAACCTCGAGCCAGGAACGTTCG AAGATTGTCCCTAAGTTAAAGGAACACTGTTTGTTCT
out GTTCCTTTAACTTAGGGACAATCTTGAACCTGGGAC CGAACGTTCCTGGCTCGAGGTTATCTCTGAGAGCCTGAACGAC
3665
in GTCGTTCAGGCACTGAGAGATAACCTCGAGCCAGGAACGTTCG ATTGTCCCTAAGAGCTTAAAGGAACACTGTTTGTTCT
out GTTCCTTTAAGCTCTTAGGGACAATCTTGAACCTGGG CGAACGTTCCTGGCTCGAGGTTATCTCTCAGTGCCTGAACGAC
3666
in CGTTCAGGCTCTTAGGGACAATCTTGAGCCAGGAACGTTCG GGTCCCAGGTTCTTAAAGGAACACTGTTTGTTCTGCA
out GTGTTCCTTTAAGAACCTGGGACCTTTGATCTTGG CGAACGTTCCTGGCTCAAGATTGTCCCTAAGAGCCTGAACG
3667
in CGTTCAGGCTCTTAGGGACAATCTTGAACCAGGAACGTTCG AAAGGTCCCAGGTTAAAGGAACACTGTTTGTTCTGCA
out AGTGTTCCTTTAACCTGGGACCTTTGATCTTGGG CGAACGTTCCTGGTTCAAGATTGTCCCTAAGAGCCTGAACG
3668
in CGTTCAGGCTCTTAGGGACAATCTTGAACCTGGAACGTTCG ATCAAAGGTCCCTTAAAGGAACACTGTTTGTTCTGCA
out AGTGTTCCTTTAAGGGACCTTTGATCTTGGGG CGAACGTTCCAGGTTCAAGATTGTCCCTAAGAGCCTGAACG
3669
in CGTTCAGGCTCTTAGGGACAATCTTGAACCTGGGACGTTCG AAGATCAAAGGTTTAAAGGAACAC
out AGTGTTCCTTTAAACCTTTGATCTTGGGGGGC CGAACGTCCCAGGTTCAAGATTGTCCCTAAGAGCCTGAACG
3670
in CGTTCAGGCTCTTAGGGACAATCTTGAACCTGGGACCTTCG CCCAAGATCAAATTAAAGGAACACTGTTTGTTCTGCA
out TGTTCCTTTAATTTGATCTTGGGGGGCTATATG CGAAGGTCCCAGGTTCAAGATTGTCCCTAAGAGCCTGAACG
图1 PA 片段插入外源基因及重配包装信号
图2 血凝实验结果 注:图 2A、图2B 共制作了11 个PA 构建体,其编码的包装信号范围为108~138 bp。成功拯救了包装序列分别为0 bp +12 bp +15 bp -6 bp -9 bp -12 bp -15 bp 的7 个重组流感病毒。
表3 血凝实验结果
图3 RBD 基因电泳结果 注:利用特异性引物扩增重组病毒PA 片段的C 末端的RBD 基因片段,0 bp 有非特异性片段,证明PR8 株123 bp 位置的包装信号并不适合H2N2 亚型,而+12 bp +15 bp -6 bp -9 bp -12 bp -15 bp 这6 个病毒能够容纳RBD 基因完成复制,说明成功构建了可插入外源基因的H2N2 载体。
1
LIANG Y. Pathogenicity and virulence of influenza[J]. Virulence,2023, 14(1): 2223057.
2
ARRANZ R, COLOMA R, CHICHÓN F J, et al. The structure of native influenza virion ribonucleoproteins[J]. Science, 2012,338(6114): 1634-1637.
3
WISE H M, HUTCHINSON E C, JAGGER B W, et al. Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain[J]. PLoS pathogens, 2012,8(11): e1002998.
4
KUMAR G, SAKHARAM K A. Tackling influenza A virus by M2 ion channel blockers: Latest progress and limitations[J]. European journal of medicinal chemistry, 2024, 267: 116172.
5
MAIR C M, LUDWIG K, HERRMANN A, et al. Receptor binding and pH stability-how influenza A virus hemagglutinin affects hostspecific virus infection[J]. Biochimica et biophysica acta, 2014,1838(4): 1153-1168.
6
LAMB R A, CHOPPIN P W. The gene structure and replication of influenza virus[J]. Annual review of biochemistry, 1983, 52: 467-506.
7
GANTI K, HAN J, MANICASSAMY B, et al. Rab11a mediates cell-cell spread and reassortment of influenza A virus genomes via tunneling nanotubes[J]. PLoS pathogens, 2021, 17(9): e1009321.
8
CHOU Y Y, HEATON N S, GAO Q, et al. Colocalization of different influenza viral RNA segments in the cytoplasm before viral budding as shown by single-molecule sensitivity FISH analysis[J]. PLoS pathogens, 2013, 9(5): e1003358.
9
ZHAO L, PENG Y, ZHOU K, et al. New insights into the nonconserved noncoding region of the subtype-determinant hemagglutinin and neuraminidase segments of influenza A viruses[J].Journal of virology, 2014, 88(19): 11493-11503.
10
OCTAVIANI C P, OZAWA M, YAMADA S, et al. High level of genetic compatibility between swine-origin H1N1 and highly pathogenic avian H5N1 influenza viruses[J]. Journal of virology, 2010,84(20): 10918-10922.
11
ROSSMAN J S, LAMB R A. Influenza virus assembly and budding[J].Virology, 2011, 411(2): 229-236.
12
LI X, GU M, ZHENG Q, et al. Packaging signal of influenza A virus[J]. Virology journal, 2021, 18(1): 36.
13
SHAFIUDDIN M, BOON A C M. RNA sequence features are at the core of influenza a virus genome packaging[J]. Journal of molecular biology, 2019, 431(21): 4217-4228.
14
GERBER M, ISEL C, MOULES V, et al. Selective packaging of the influenza A genome and consequences for genetic reassortment[J].Trends in microbiology, 2014 , 22(8): 446-455.
15
BANCROFT C T, PARSLOW T G. Evidence for segment-nonspecific packaging of the influenza a virus genome[J]. Journal of virology,2002, 76(14): 7133-7139.
16
DADONAITE B, GILBERTSON B, KNIGHT M L, et al. The structure of the influenza A virus genome[J]. Nature microbiology,2019, 4(11): 1781-1789.
17
HARRIS A, CARDONE G, WINKLER D C, et al. Influenza virus pleiomorphy characterized by cryoelectron tomography[J].Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(50): 19123-19127.
18
LOWEN A C. It's in the mix: Reassortment of segmented viral genomes[J]. PLoS pathogens, 2018, 14(9): e1007200.
19
FUJII Y, GOTO H, WATANABE T, et al. Selective incorporation of influenza virus RNA segments into virions[J]. Proceedings of the national academy of sciences of the United States of America, 2003,100(4): 2002-2007.
20
COBBIN J C, ONG C, VERITY E, et al. Influenza virus PB1 and neuraminidase gene segments can cosegregate during vaccine reassortment driven by interactions in the PB1 coding region[J].Journal of virology, 2014, 88(16): 8971-8980.
21
TCHATALBACHEV S, FLICK R, HOBOM G. The packaging signal of influenza viral RNA molecules[J]. RNA, 2001, 7(7): 979-989.
22
FLICK R, HOBOM G. Interaction of influenza virus polymerase with viral RNA in the 'corkscrew' conformation[J]. The journal of general virology, 1999, 80 (Pt 10): 2565-2572.
23
DESSELBERGER U, RACANIELLO V R, ZAZRA J J, et al. The 3'and 5'-terminal sequences of influenza A, B and C virus RNA segments are highly conserved and show partial inverted complementarity[J].Gene, 1980, 8(3): 315-328.
24
BAE S H, CHEONG H K, LEE J H, et al. Structural features of an influenza virus promoter and their implications for viral RNA synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(19): 10602-10607.
25
龙云凤. H3N2 亚型流感病毒Vero 细胞冷适应株遗传重配研究[D].北京:北京协和医学院, 2015.
26
DENG S, LIU Y, TAM R C, et al. An intranasal influenza virus-vectored vaccine prevents SARS-CoV-2 replication in respiratory tissues of mice and hamsters[J]. Nature communications, 2023, 14(1): 2081.
27
LIEW F, TALWAR S, CROSS A, et al. SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination[J]. EBioMedicine, 2023, 87:104402.
28
LUND F E, RANDALL T D. Scent of a vaccine[J]. Science, 2021,373(6553): 397-399.
29
GAO Q. CHOU Y Y, DOĞANAY S, et al. The influenza A virus PB2, PA, NP, and M segments play a pivotal role during genome packaging[J]. Journal of virology, 2012, 86(13): 7043-7051.
30
HOFFMANN E, STECH J, GUAN Y, et al. Universal primer set for the full-length amplification of all influenza A viruses[J]. Archives of virology, 2001, 146(12): 2275-2289.
31
HOFFMANN E, NEUMANN G, KAWAOKA Y, et al. A DNA transfection system for generation of influenza A virus from eight plasmids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(11): 6108-6113.
32
SONG W, WANG P, MOK B W, et al. The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication[J]. Nature communications, 2014, 5: 5509.
33
ABRAHAM M, BEAVIS A C, XIAO P, et al. Evaluation of a new viral vaccine vector in mice and rhesus macaques: J paramyxovirus expressing hemagglutinin of influenza A virus H5N1[J]. Journal of virology, 2021, 95(22): e0132121.
34
HAMILTON J R, VIJAYAKUMAR G, PALESE P. A recombinant antibody-expressing influenza virus delays tumor growth in a mouse model[J]. Cell reports, 2018, 22(1): 1-7.
35
FOX A, QUINN K M, SUBBARAO K. Extending the breadth of influenza vaccines: Status and prospects for a universal vaccine[J].Drugs, 2018, 78(13): 1297-1308.
36
BU L, CHEN B, XING L, et al. Generation of a pdmH1N1 2018 influenza A reporter virus carrying a mCherry fluorescent protein in the PA segment[J]. Frontiers in cellular and infection microbiology,2022, 11: 827790.
37
RAJÃO D S, PÉREZ D R. Universal vaccines and vaccine platforms to protect against influenza viruses in humans and agriculture[J].Frontiers in microbiology, 2018, 9: 123.
38
CHENG X, ZENGEL J R, SUGUITAN A L, et al. Evaluation of the humoral and cellular immune responses elicited by the live attenuated and inactivated influenza vaccines and their roles in heterologous protection in ferrets[J]. The journal of infectious diseases, 2013,208(4): 594-602.
39
COX A, BAKER S F, NOGALES A, et al. Development of a mouseadapted live attenuated influenza virus that permits in vivo analysis of enhancements to the safety of live attenuated influenza virus vaccine[J]. Journal of virology, 2015, 89(6): 3421-3426.
40
KUMAR A, MELDGAARD T S, BERTHOLET S. Novel platforms for the development of a universal influenza vaccine[J]. Frontiers in immunology, 2018, 9: 600.
41
LI S, YE A, SINGH H. Effect of seasonal variations on the acid gelation of milk[J]. Journal of dairy science, 2020, 103(6): 4965-4974.
No related articles found!
阅读次数
全文


摘要