1 |
XING P, ZHONG Y, CUI X, et al. Natural products in digestive tract tumors metabolism: Functional and application prospects[J].Pharmacological research, 2023, 191: 106766.
|
2 |
AHMAD A, TIWARI R K, SIDDIQUI S, et al. Emerging trends in gastrointestinal cancers: Targeting developmental pathways in carcinogenesis and tumor progression[J]. International review of cell and molecular biology, 2024, 385: 41-99.
|
3 |
RAKOTOMALALA A, ESCANDE A, FURLAN A, et al. Hypoxia in solid tumors: How low oxygenation impacts the "Six Rs" of radiotherapy[J]. Frontiers in endocrinology, 2021, 12: 742215.
|
4 |
陈影, 庄蕾, 张丹红, 等. 低氧微环境通过TGFBI调控Wnt/β-catenin通路介导胰腺癌化疗耐药及机制研究[J]. 现代肿瘤医学, 2024,32(1): 42-46.
|
5 |
KUBAICHUK K, KIETZMANN T. USP10 contributes to colon carcinogenesis via mTOR/S6K mediated HIF-1α but not HIF-2α protein synthesis[J]. Cells, 2023, 12(12): 1585.
|
6 |
赵斌燕, 齐峰. 关于缺氧对细胞及消化道系统影响的研究[J]. 高原医学杂志, 2005, 15(4): 61-64.
|
7 |
YFANTIS A, MYLONIS I, CHACHAMI G, et al. Transcriptional response to hypoxia: The role of HIF-1-associated co-regulators[J].Cells, 2023, 12(5): 798.
|
8 |
VANDERHAEGHEN T, BEYAERT R, LIBERT C. Bidirectional crosstalk between hypoxia inducible factors and glucocorticoid signalling in health and disease[J]. Frontiers in immunology, 2021, 12:684085.
|
9 |
邢英琦, 徐静, 李琳, 等. 缺氧诱导因子(HIF-1)的结构调节与靶基因研究进展[J]. 中国实验诊断学, 2011, 15(1): 177-179.
|
10 |
HE F, XIAO H, CAI Y, et al. ATF5 and HIF1α cooperatively activate HIF1 signaling pathway in esophageal cancer[J]. Cell communication and signaling, 2021, 19(1): 53.
|
11 |
DONG S, LIANG S, CHENG Z, et al. ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer[J]. Journal of experimental & clinical cancer research, 2022, 41(1): 15.
|
12 |
LUO Z, TIAN M, YANG G, et al. Hypoxia signaling in human health and diseases: Implications and prospects for therapeutics[J]. Signal transduction and targeted therapy, 2022, 7(1): 218.
|
13 |
石松长, 黄昌明. PI-3K[MS1]/Akt信号通路与消化道肿瘤的研究进展[J]. 医学综述, 2007(14): 1070-1072.
|
14 |
杨梦思, 周娜, 王志钢, 等. 转录因子HIF-1α及其信号通路在疾病发生中的作用研究进展[J].生物技术通报, 2016, 32(8): 8-13.
|
15 |
LIU S, KANG L, SONG Y, et al. Role of the HIF-1α/BNIP3 signaling pathway in recurrent hepatocellular carcinoma and the mechanism of traditional Chinese medicine[J]. Journal of hepatocellular carcinoma,2023, 10: 893-908.
|
16 |
SEMENZA G L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations[J]. The journal of clinical investigation, 2013, 123(9): 3664-3671.
|
17 |
李慧杰, 齐元富, 李秀荣. 缺氧诱导因子1在肿瘤进程中的作用机制研究[J]. 现代肿瘤医学, 2018, 26(18): 2979-2981.
|
18 |
WAN B, CHENG M, HE T, et al. UCHL5 promotes hepatocellular carcinoma progression by promoting glycolysis through activating Wnt/β-catenin pathway[J]. BioMed central cancer, 2024, 24(1): 618.
|
19 |
HU Y, XING Y, FAN G, et al. L-arginine combination with 5-fluorouracil inhibit hepatocellular carcinoma cells through suppressing iNOS/NO/AKT-mediated glycolysis[J]. Frontiers in pharmacology, 2024, 15:1391636.
|
20 |
LI Y, XU Q, YANG W, et al. Oleanolic acid reduces aerobic glycolysis-associated proliferation by inhibiting yes-associated protein in gastric cancer cells[J]. Gene, 2019, 712: 143956.
|
21 |
Yang Q, Lei X, He J, et al. N4-Acetylcytidine drives glycolysis addiction in gastric cancer via NAT10/SEPT9/HIF-1α positive feedback loop[J]. Advanced science, 2023, 10(23): e2300898.
|
22 |
郭德正, 周宗和, 罗兴成. HIF-1α与胃肠道肿瘤的关系研究进展[J].中国民康医学, 2015, 27(8): 83-85.
|
23 |
XU G, LI M, WU J, et al. Circular RNA circNRIP1 Sponges microRNA-138-5p to maintain hypoxia-induced resistance to 5-fluorouracil through HIF-1α-dependent glucose metabolism in gastric carcinoma[J]. Cancer management and research, 2020, 12:2789-2802.
|
24 |
赵林林. TCP1α在人胰腺导管腺癌中的表达及对胰腺癌细胞株生物学行为的影响[D]. 济南:山东大学, 2020.
|
25 |
CHEN M, CEN K, SONG Y, et al. NUSAP1-LDHA-glycolysis-lactate feedforward loop promotes Warburg effect and metastasis in pancreatic ductal adenocarcinoma[J]. Cancer letters, 2023, 567: 216285.
|
26 |
SHANG J, XIA Q, SUN Y, et al. Bufalin-loaded multifunctional photothermal nanoparticles inhibit the anaerobic glycolysis by targeting SRC-3/HIF-1α pathway for improved mild photothermal therapy in CRC[J]. International journal of nanomedicine, 2024, 19: 7831-7850.
|
27 |
WANG J, WANG X, LIU Z, et al. IGFBP7 promotes gastric cancer by facilitating epithelial-mesenchymal transition of gastric cells[J].Heliyon, 2024, 10(10): e30986.
|
28 |
LIU M, YANG J, XU B, et al. Tumor metastasis: Mechanistic insights and therapeutic interventions[J]. MedComm, 2021, 2(4): 587-617.
|
29 |
MEI D, ZHU Y, ZHANG L, et al. The role of CTHRC1 in regulation of multiple signaling and tumor progression and metastasis[J].Mediators of inflammation, 2020, 2020: 9578701.
|
30 |
SEO J, JEONG D W, PARK J W, et al. Fatty-acid-induced FABP5/HIF-1 reprograms lipid metabolism and enhances the proliferation of liver cancer cells[J]. Communications biology, 2020, 3(1): 638.
|
31 |
DAI W, LI Y, SUN W, et al. Silencing of OGDHL promotes liver cancer metastasis by enhancing hypoxia inducible factor 1 α protein stability[J]. Cancer science, 2023, 114(4): 1309-1323.
|
32 |
王强, 郭德正, 刘焱伟, 等. HIF-1α及STAT3联合预测异时性结直肠癌肝转移[J]. 贵阳医学院学报, 2015, 40(7): 692-695.
|
33 |
XU L, HUAN L, GUO T, et al. LncRNA SNHG11 facilitates tumor metastasis by interacting with and stabilizing HIF-1α[J]. Oncogene,2020, 39(46): 7005-7018.
|
34 |
BIAN Y, YIN G, WANG G, et al. Degradation of HIF-1α induced by curcumol blocks glutaminolysis and inhibits epithelial-mesenchymal transition and invasion in colorectal cancer cells[J]. Cell biology and toxicology, 2023, 39(5): 1957-1978.
|
35 |
MU G, ZHU Y, DONG Z, et al. Calmodulin 2 facilitates angiogenesis and metastasis of gastric cancer via STAT3/HIF-1A/VEGF-A mediated macrophage polarization[J]. Frontiers in oncology, 2021, 11: 727306.
|
36 |
LEE PWT, KOSEKI LR, HAITANI T, et al. Hypoxia-inducible factordependent and independent mechanisms underlying chemoresistance of hypoxic cancer cells[J]. Cancers, 2024, 16(9): 1729.
|
37 |
WANG J, WANG X, LIU Z, et al. IGFBP7 promotes gastric cancer by facilitating epithelial-mesenchymal transition of gastric cells[J].Heliyon, 2024, 10(10): e30986.
|
38 |
IKEDA H, KAKEYA H. Targeting hypoxia-inducible factor 1 (HIF-1)signaling with natural products toward cancer chemotherapy[J]. The journal of antibiotics, 2021, 74(10): 687-695.
|
39 |
WAARTS M R, STONESTROM A J, PARK Y C, et al. Targeting mutations in cancer[J]. The journal of clinical investigation, 2022,132(8): e154943.
|
40 |
CUI C P, WONG C C, KAI A K, et al. SENP1 promotes hypoxiainduced cancer stemness by HIF-1α deSUMOylation and SENP1/HIF-1α positive feedback loop[J]. Gut, 2017, 66(12): 2149-2159.
|
41 |
SUN W, LEI X, LU Q, et al. LncRNA FRMD6-AS1 promotes hepatocellular carcinoma cell migration and stemness by regulating SENP1/HIF-1α axis[J]. Pathology research and practice, 2023,243:154377.
|
42 |
CHEN J, LI L, FENG Y, et al. MKLN1-AS promotes pancreatic cancer progression as a crucial downstream mediator of HIF-1α through miR-185-5p/TEAD1 pathway[J]. Cell biology and toxicology, 2024, 40(1):30.
|
43 |
LEE S H, GOLINSKA M, GRIFFITHS J R. HIF-1-independent mechanisms regulating metabolic adaptation in hypoxic cancer cells[J]. Cells, 2021, 10(9): 2371.
|