1 |
CHOBY J E, HOWARD-ANDERSON J, WEISS D S. Hypervirulent Klebsiella pneumoniae-clinical and molecular perspectives[J]. Journal of internal medicine, 2020, 287(3): 283-300.
|
2 |
CHANG D, SHARMA L, DELA CRUZ C S, et al. Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection[J]. Frontiers in microbiology, 2021, 12: 750662.
|
3 |
QIN X, DING L, HAO M, et al. Antimicrobial resistance of clinical bacterial isolates in China: Current status and trends[J]. JAC-antimicrobial resistance, 2024, 6(2): dlae052.
|
4 |
LUO Q, LU P, CHEN Y, et al. ESKAPE in China: Epidemiology and characteristics of antibiotic resistance[J]. Emerging microbes & infections, 2024, 13(1): 2317915.
|
5 |
LUTGRING J D. Carbapenem-resistantEnterobacteriaceae: An emerging bacterial threat[J]. Seminars in diagnostic pathology, 2019, 36(3): 182-186.
|
6 |
KARAISKOS I, GALANI I, PAPOUTSAKI V, et al. Carbapenemase producing Klebsiella pneumoniae: Implication on future therapeutic strategies[J]. Expert review of anti-infective therapy, 2022, 20(1): 53-69.
|
7 |
CANDAN E D, AKSÖZ N. Klebsiella pneumoniae: Characteristics of carbapenem resistance and virulence factors[J]. Acta biochimica polonica, 2015, 62(4): 867-874.
|
8 |
GAO H, LIU Y, WANG R, et al. The transferability and evolution of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae from clinical settings[J]. EBioMedicine, 2020, 51: 102599.
|
9 |
KARAMPATAKIS T, ZARRAS C, PAPPA S, et al. Emergence of ST39 carbapenem-resistant Klebsiella pneumoniae producing VIM-1 and KPC-2[J]. Microbial pathogenesis, 2022, 162: 105373.
|
10 |
LIU J, YU J, CHEN F, et al. Emergence and establishment of KPC-2-producing ST11 Klebsiella pneumoniae in a general hospital in Shanghai, China[J]. European journal of clinical microbiology & infectious diseases: Official publication of the European society of Clinical Microbiology, 2018, 37(2): 293-299.
|
11 |
CHENG J, ZHAO D, MA X, et al. Molecular epidemiology, risk factors, and outcomes of carbapenem-resistant Klebsiella pneumoniae infection in a tertiary hospital in eastern China: For a retrospective study conducted over 4 years[J]. Frontiers in microbiology, 2023, 14: 1223138.
|
12 |
JIANG W, BIKARD D, COX D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature biotechnology, 2013, 31(3): 233-239.
|
13 |
周红蕾, 程淑琴, 李佳鹏, 等. 猫杯状病毒RAA-CRISPR/Cas12a-LFS检测方法的建立及初步应用[J]. 中国预防兽医学报, 2023, 45(5): 494-501.
|
14 |
徐蛟, 王英丽, 王莹, 等. 基于RAA-CRISPR/Cas12a快速检测尼帕病毒方法的建立[J]. 中国动物检疫, 2023, 40(10): 95-99, 111.
|
15 |
林冬媛, 谢龙飞, 李芙蓉, 等. 基于CRISPR-Cas12a系统的鼠伤寒沙门氏菌可视化检测方法的建立[J]. 黑龙江畜牧兽医, 2024(8): 68-76.
|
16 |
苏璇, 葛以跃, 张倩, 等. CRISPR-Cas13a辅助RAA快速检测金黄色葡萄球菌的研究[J]. 中国病原生物学杂志, 2020, 15(3): 253-258.
|
17 |
李婷, 刘燕红, 赵松, 等. 重组酶介导的核酸等温扩增荧光法快速检测日本血吸虫感染性钉螺[J]. 中国血吸虫病防治杂志, 2019, 31(2): 109-114, 120.
|
18 |
章太婵, 车玉传, 梁雪雁, 等. RT-RAA联合CRISPR/Cas12a快速检测新型冠状病毒方法的建立与评价[J]. 临床检验杂志, 2024, 42(4): 246-251.
|
19 |
LI D, HUANG X, RAO H, et al. Klebsiella pneumoniae bacteremia mortality: A systematic review and meta-analysis[J]. Frontiers in cellular and infection microbiology, 2023, 13: 1157010.
|
20 |
GIACOBBE D R, MARELLI C, CATTARDICO G, et al. Mortality in KPC-producing Klebsiella pneumoniae bloodstream infections: A changing landscape[J]. The journal of antimicrobial chemotherapy, 2023, 78(10): 2505-2514.
|
21 |
SUN X, ZOU X, ZHOU B, et al. Comparison of bloodstream and non-bloodstream infections caused by carbapenem-resistant Klebsiella pneumoniae in the intensive care unit: A 9-year respective study[J]. Frontiers in medicine, 2023, 10: 1230721.
|
22 |
PU D, ZHAO J, CHANG K, et al. "Superbugs" with hypervirulence and carbapenem resistance in Klebsiella pneumoniae: The rise of such emerging nosocomial pathogens in China[J]. Science bulletin, 2023, 68(21): 2658-2670.
|
23 |
YANG X, SUN Q, LI J, et al. Molecular epidemiology of carbapenem-resistant hypervirulent Klebsiella pneumoniae in China[J]. Emerging microbes & infections, 2022, 11(1): 841-849.
|
24 |
LIAO W, LIU Y, ZHANG W. Virulence evolution, molecular mechanisms of resistance and prevalence of ST11 carbapenem-resistant Klebsiella pneumoniae in China: A review over the last 10 years[J]. Journal of global antimicrobial resistance, 2020, 23: 174-180.
|
25 |
HU Y, LIU C, SHEN Z, et al. Prevalence, risk factors and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in patients from Zhejiang, China, 2008-2018[J]. Emerging microbes & infections, 2020, 9(1): 1771-1779.
|
26 |
POTRON A, FOURNIER D, EMERAUD C, et al. Evaluation of the immunochromatographic NG-Test Carba 5 for rapid identification of carbapenemase in nonfermenters[J]. Antimicrob agents chemother, 2019, 63(9): e00968-19.
|
27 |
HONG J S, KIM D, YOON E J, et al. Performance evaluation of the PANA RealTyper™ CRE Kit for detecting carbapenemase genes in Gram-negative bacilli[J]. Journal of global antimicrobial resistance, 2019, 18: 100-103.
|
28 |
HUANG Y, LI J, WANG Q, et al. Rapid detection of KPC-producing Klebsiella pneumoniae in China based on MALDI-TOF MS[J]. Journal of microbiological methods, 2022, 192: 106385.
|
29 |
曹亚玲, 田原, 范子豪, 等. 基于RAA-CRISPR-Cas13a检测KPC型碳青霉烯酶基因方法的建立及评价[J]. 中华检验医学杂志, 2024, 47(2): 159-164.
|
30 |
XU H, TANG H, LI R, et al. A new method based on LAMP-CRISPR-Cas12a-Lateral flow immunochromatographic strip for detection[J]. Infection and drug resistance, 2022, 15: 685-696.
|