切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2015, Vol. 03 ›› Issue (03) : 139 -145. doi: 10.3877/cma.j.issn.2095-5820.2015.03.003

所属专题: 文献

综述

新一代测序技术在肿瘤精准医学中的应用
王旭东, 鞠少卿   
  • 收稿日期:2015-08-19 出版日期:2015-08-28
  • 通信作者: 鞠少卿

Application of next generation sequencing in cancer precision medicine

Xudong Wang, Shaoqing Ju   

  • Received:2015-08-19 Published:2015-08-28
  • Corresponding author: Shaoqing Ju
  • About author:
    Corresponding author: Ju Shaoqing, Email:
引用本文:

王旭东, 鞠少卿. 新一代测序技术在肿瘤精准医学中的应用[J/OL]. 中华临床实验室管理电子杂志, 2015, 03(03): 139-145.

Xudong Wang, Shaoqing Ju. Application of next generation sequencing in cancer precision medicine[J/OL]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2015, 03(03): 139-145.

精准医学依据全基因组测序数据及其他相关分子信息与个人疾病状态资料,可更好地诠释疾病发生的分子机理,进而为开发靶向药物和实现精准用药做准备。目前,精准医学的理念将首先在临床肿瘤诊治中应用,人们可根据导致疾病的潜在分子和相关因子对疾病进行诊断和分类,实现"同病异治"和"异病同治"的临床治疗策略。此外,新一代测序技术也将成为临床肿瘤诊治中的不可或缺的技术;同时,还需进一步完善相应的管理政策,以达到临床应用规范化管理的目的。

In precision medicine. whole genome sequencing data, related molecular information and individual clinical data, are often employed forselecting appropriate and optmal therepiesbased on the contect of a patient′s genetic conten, and then prepare for the development of targeted drugs and achieve accurate medical care. At present, the concept of precision medicine is infiltrating into the fields of clinical tumor diagnosis and treatment. Tumor will be diagnosed and classified according to underlying molecular and related factors to achieve "treating the same disease with different governance" and "treating different diseases with the same protocol". In addition, the next generation sequencing(NGS) technology will be an indispensable technology in precision medicine, which promotes the application of precision medical treatment in the clinical setting. Mereover, it also need to improve the regulatory policies, to achieve the goal of standardized management of NGS in clinical application.

表1 常见肿瘤的相关关键基因突变
表2 与靶向药物相关的分子伴随检测
表3 遗传性基因突变与乳腺癌发生风险关联性[39]
[1]
Collins FS, Varmus H. A new initiative on precision medicine[J]. N Engl J Med, 2015, 372(9):793–795.
[2]
Ashley EA. The precision medicine initiative: a new national effort[J]. JAMA, 2015, 313(21):2119–2120.
[3]
Ong FS, Lin JC, Das K, et al. Translational utility of next-generation sequencing[J]. Genomics, 2013, 102(3):137–139.
[4]
Moorcraft SY, Gonzalez D, Walker BA. Understanding next generation sequencing in oncology: A guide for oncologists[J]. Crit Rev Oncol Hematol, 2015, 96(3):463–474.
[5]
Hinrichs JW, van Blokland WT, Moons MJ, et al. Comparison of next-generation sequencing and mutation-specific platforms in clinical practice[J]. Am J Clin Pathol, 2015, 143(4):573–578.
[6]
Xuan J, Yu Y, Qing T, et al. Next-generation sequencing in the clinic: promises and challenges[J]. Cancer Lett, 2013, 340(2):284–295.
[7]
Jessri M, Farah CS. Next generation sequencing and its application in deciphering head and neck cancer[J]. Oral Oncol, 2014, 50(4):247–253.
[8]
Tattini L, D’Aurizio R, Magi A. Detection of genomic structural variants from next-generation sequencing data[J]. Front Bioeng Biotechnol, 2015, 3:92.
[9]
Nakagawa H, Wardell CP, Furuta M, et al. Cancer whole-genome sequencing: present and future[J]. Oncogene, 2015.[Epub ahead of print]
[10]
Samorodnitsky E, Jewell BM, Hagopian R, et al. Evaluation of hybridization capture versus amplicon-based methods for whole-exome sequencing[J]. Hum Mutat, 2015, 36(9):903–914.
[11]
Lin X, Tang W, Ahmad S, et al. Applications of targeted gene capture and next-generation sequencing technologies in studies of human deafness and other genetic disabilities[J]. Hear Res, 2012, 288(1–2):67–76.
[12]
Stranneheim H, Wedell A. Exome and genome sequencing: a revolution for the discovery and diagnosis of monogenic disorders[J]. J Intern Med, 2015.[Epub ahead of print]
[13]
Scheffler M, Schultheis A, Teixido C, et al. Ros1 rearrangements in lung adenocarcinoma: Prognostic impact, therapeutic options and genetic variability[J]. Oncotarget, 2015, 6(12):10577–10585.
[14]
Coco S, Truini A, Vanni I, et al. Next generation sequencing in non-small cell lung cancer: new avenues toward the personalized medicine[J]. Curr Drug Targets, 2015, 16(1):47–59.
[15]
Nielsen MM, Tehler D, Vang S, et al. Identification of expressed and conserved human noncoding RNAs[J]. RNA, 2014, 20(2):236–251.
[16]
Yang KC, Yamada KA, Patel AY, et al. Deep rna sequencing reveals dynamic regulation of myocardial noncoding rnas in failing human heart and remodeling with mechanical circulatory support[J]. Circulation, 2014, 129(9):1009–1021.
[17]
Martens-Uzunova ES, Jalava SE, Dits NF, et al. Diagnostic and prognostic signatures from the small non-coding rna transcriptome in prostate cancer[J]. Oncogene, 2012, 31(8):978–991.
[18]
Hagemann IS, Devarakonda S, Lockwood CM, et al. Clinical next-generation sequencing in patients with non-small cell lung cancer[J]. Cancer, 2015, 121(4):631–639.
[19]
Shen T, Pajaro-Van de Stadt SH, Yeat NC, et al. Clinical applications of next generation sequencing in cancer: From panels, to exomes, to genomes[J]. Front Genet, 2015, 6:215.
[20]
Shih J, Bashir B, Gustafson KS, et al. Cancer Signature Investigation: ERBB2 (HER2)- Activating Mutation and Amplification-Positive Breast Carcinoma Mimicking Lung Primary[J]. J Natl Compr Canc Netw, 2015, 13(8):947–952.
[21]
Gusnanto A, Tcherveniakov P, Shuweihdi F, et al. Stratifying tumour subtypes based on copy number alteration profiles using next-generation sequence data[J]. Bioinformatics, 2015, 31(16):2713–2720.
[22]
Fenizia F, De Luca A, Pasquale R, et al. Egfr mutations in lung cancer: From tissue testing to liquid biopsy[J]. Future Oncol, 2015, 11(11):1611–1623.
[23]
Yong E. Cancer biomarkers: Written in blood[J]. Nature, 2014, 511(7511):524–526.
[24]
Lebofsky R, Decraene C, Bernard V, et al. Circulating tumor DNA as a non-invasive substitute to metastasis biopsy for tumor genotyping and personalized medicine in a prospective trial across all tumor types[J]. Mol Oncol, 2015, 9(4):783–790.
[25]
Frenel JS, Carreira S, Goodall J, et al. Serial next generation sequencing of circulating cell free DNA evaluating tumour clone response to molecularly targeted drug administration[J]. Clin Cancer Res, 2015. [Epub ahead of print]
[26]
Dawson SJ, Tsui DW, Murtaza M, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer[J]. N Engl J Med, 2013, 368(13):1199–1209.
[27]
O’Brien CP, Taylor SE, O’Leary JJ, et al. Molecular testing in oncology: Problems, pitfalls and progress[J]. Lung Cancer, 2014, 83(3):309–315.
[28]
Sima J, Gilbert DM. Complex correlations: replication timing and mutational landscapes during cancer and genome evolution[J]. Curr Opinion Genet Dev, 2014, 25:93–100.
[29]
Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes[J]. Science, 2013, 339(6127):1546–1558.
[30]
Lipson D, Capelletti M, Yelensky R, et al. Identification of new alk and ret gene fusions from colorectal and lung cancer biopsies[J]. Nat Med, 2012, 18(3):382–384.
[31]
Janne PA, Yang JC, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer[J]. N Engl J Med, 2015, 372(18):1689–1699.
[32]
Jiang T, Zhou C. Clinical activity of the mutant-selective EGFR inhibitor AZD9291 in patients with EGFR inhibitor-resistant non-small cell lung cancer[J]. Translat Lung Cancer Res, 2014, 3(6):370–372.
[33]
Drilon A, Wang L, Arcila ME, et al. Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in lung adenocarcinomas otherwise negative for such alterations by other genomic testing approaches[J]. Clin Cancer Res, 2015, 21(16):3631–3639.
[34]
Azijli K, Stelloo E, Peters GJ, et al. New developments in the treatment of metastatic melanoma: Immune checkpoint inhibitors and targeted therapies[J]. Anticancer Res, 2014, 34(4):1493–1505.
[35]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer, 2012, 12(4):252–264.
[36]
Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J]. Science, 2015, 348(6230):124–128.
[37]
Judkins T, Leclair B, Bowles K, et al. Development and analytical validation of a 25-gene next generation sequencing panel that includes the BRCA1 and BRCA2 genes to assess hereditary cancer risk[J]. BMC Cancer, 2015, 15:215.
[38]
Meng H, Cao Y, Qin J, et al. DNA methylation, its mediators and genome integrity[J]. Int J Biol Sci, 2015, 11(5):604–617.
[39]
Pilgrim SM, Pain SJ, Tischkowitz MD. Opportunities and challenges of next-generation DNA sequencing for breast units[J]. Br J Surg, 2014, 101(8):889–898.
[40]
Bennett NC, Farah CS. Next-generation sequencing in clinical oncology: next steps towards clinical validation[J]. Cancers (Basel), 2014, 6(4):2296–2312.
[1] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[2] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[5] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[6] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[7] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[8] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[9] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[10] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[13] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[14] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[15] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?