切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2014, Vol. 02 ›› Issue (04) : 31 -36. doi: 10.3877/cma.j.issn.2095-5820.2014.04.007

综述

血液微小RNAs 用于阿尔茨海默病的早期诊断研究
郭瑞1, 李璋1, 戚元英1, 叶辉1, 卢志明1,()   
  1. 1.250021 济南,山东大学附属山东省立医院检验科
  • 收稿日期:2014-07-06 出版日期:2014-11-28
  • 通信作者: 卢志明
  • 基金资助:
    山东省科技攻关计划资助项目(2009GG10002014)

Blood microRNAs as biomarkers for early diagnosis of Alzheimer's disease

Rui Guo1, Zhang Li1, Yuanying Qi1, Hui Ye1, Zhiming Lu1,()   

  1. 1.Department of Clinical Laboratory,Shandong Provincial Hospital Affiliated to Shandong University,Jinan 250021,China
  • Received:2014-07-06 Published:2014-11-28
  • Corresponding author: Zhiming Lu
引用本文:

郭瑞, 李璋, 戚元英, 叶辉, 卢志明. 血液微小RNAs 用于阿尔茨海默病的早期诊断研究[J/OL]. 中华临床实验室管理电子杂志, 2014, 02(04): 31-36.

Rui Guo, Zhang Li, Yuanying Qi, Hui Ye, Zhiming Lu. Blood microRNAs as biomarkers for early diagnosis of Alzheimer's disease[J/OL]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2014, 02(04): 31-36.

阿尔茨海默病(Alzheimer's disease,AD)是一种神经系统退行性疾病,主要以进行性记忆损害、 认知功能下降、 行为改变以及语言障碍为主要临床表现,是老年痴呆中最常见的类型,主要病理改变是老年斑和神经元纤维缠结的形成。 目前,对AD尚无有效治愈方法,仅可通过药物延缓其发展过程,因此迫切需要提高AD早期诊断水平,以尽早干预和治疗。 微小RNA(microRNAs)是一种高度保守的小片段非编码RNA,在转录后水平调控基因表达。 在神经元形成、 分化、 突触塑造等过程中起重要调节作用,当神经元发生病变、 凋亡时,microRNAs表达谱将发生改变,研究microRNAs表达谱变化规律可了解AD发病过程。 同时,microRNAs还可通过血脑屏障,且其二级茎环结构相对稳定不易被降解,这使microRNAs有望用于AD早期诊断。 现将近年microRNAs表达谱在AD患者脑组织和血液中异常表达研究进展予以综述。

Alzheimer's disease(AD)is a progressive neurodegeneration and the most common form of dementia,which is characterized by progressive memory impairment,cognitive decline,altered behavior and language deficit. The main pathological changes are deposition of senile plaque,and neurofibrillary tangles.Currently there is no effective treatment for AD,only some drugs can be used to delay the disease process. It is urgent to improve the early diagnosis of AD,and give more effective intervention and treatment at the early stage. MicroRNAs are highly conserved small non-coding RNAs that regulate gene expression at the post-transcriptional level.MicroRNAs play an important regulatory role in neuron formation,differentiation and synaptic shaping. Neuronal pathological changes and apoptosis are associated with the alterations of microRNAs network. In the development of AD,the type and amount of microRNAs are constantly changing,so we can analyze the expression profile of microRNAs to monitor the AD pathogenesis.MicroRNAs can be released into the body fluids through the blood-brain barrier,and not be easily degraded due to its two stem-loop structure.This makes the microRNAs is expected as a new biomarker for the early diagnosis of AD. This review summarized recent studies focus on aberrant microRNAs expression in AD brain and blood.

1
Matsumoto Y,Niimi N,Kohyama K. Development of a new DNA vaccine for Alzheimer disease targeting a wide range of abeta species and amyloidogenic peptides[J].PLoS One,2013,8(9):e75203.
2
Bloom GS.Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis[J]. JAMA Neurol,2014,71(4):505-508.
3
Janus C,Pearson J,McLaurin J,et al.A beta peptide immunization reduces behavioural impairment and plaques in a model ofAlzheimer's disease[J].Nature,2000,408(6815):979-982.
4
Ballatore C,Lee VM,Trojanowski JQ.Tau-mediated neurodegeneration in Alzheimer's disease and related disorders[J]. Nat Rev Neurosci,2007,8(9):663-672.
5
Gonsalves D,Jovanovic K,Da Costa Dias B,et al. Global Alzheimer Research Summit: basic and clinical research: present and future Alzheimer research[J].Prion,2012,6(1):7-10.
6
Ferri CP,Prince M,Brayne C,et al.Global prevalence of dementia:a Delphi consensus study[J].Lancet,2005,366(9503):2112-2117.
7
McKhann G,Drachman D,Folstein M,et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease[J].Neurology,1984,34(7):939-944.
8
Dubois B,Feldman HH,Jacova C,et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria[J].Lancet Neurol,2007,6(8):734-746.
9
Malek-Ahmadi M,Davis K,Belden CM,et al. Comparative analysis of the Alzheimer questionnaire (AQ) with the CDR sum of boxes,MoCA,and MMSE[J]. Alzheimer Dis Assoc Disord,2014,28(3):2 9 6-2 9 8.
10
van de Pol LA,Hensel A,Barkhof F,et al. Hippocampal atrophy in Alzheimer disease:age matters[J].Neurology,2006,66(2):236-238.
11
Davatzikos C,Xu F,An Y,et al. Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index[J].Brain,2009,132(Pt 8):2026-2035.
12
Dickerson BC. Diagnostic tests for Alzheimer disease: Judicious use can be helpful in clinical practice[J]. Neurol Clin Pract,2012,2(2):1 5 4-1 5 7.
13
Forsberg A,Engler H,Almkvist O,et al. PET imaging of amyloid deposition in patients with mild cognitive impairment[J]. Neurobiol Aging,2008,29(10):1456-1465.
14
Basun H,Bogdanovic N,Ingelsson M,et al. Clinical and neuropathological features of the arctic APP gene mutation causing early-onset Alzheimer disease[J].Arch Neurol,2008,65(4):499-505.
15
Lleo A,Berezovska O,Growdon JH,et al. Clinical,pathological,and biochemical spectrum of Alzheimer disease associated with PS-1 mutations[J].Am J Geriatr Psychiatry,2004,12(2):146-156.
16
Malkki H. Alzheimer disease: Effects of the APOE epsilon4 allele on brain development[J].Nat Rev Neurol,2014,10(1):4.
17
Lambert MP,Barlow AK,Chromy BA,et al. Diffusible,nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins[J]. Proc Natl Acad Sci U SA,1998,95(11):6448-6453.
18
Tapiola T,Alafuzoff I,Herukka SK,et al.Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain[J].Arch Neurol,2009,66(3):382-389.
19
Mehta PD,Pirttila T,Patrick BA,et al.Amyloid beta protein 1-40 and 1-42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease[J].Neurosci Lett,2001,304(1-2):102-106.
20
Wallin AK,Blennow K,Andreasen N,et al. CSF biomarkers for Alzheimer's Disease: levels of beta-amyloid,tau,phosphorylated tau relate to clinical symptoms and survival[J]. Dement Geriatr Cogn Disord,2006,21(3):131-138.
21
de la Monte SM,Wands JR. Neurodegeneration changes in primary central nervous system neurons transfected with the Alzheimerassociated neuronal thread protein gene[J]. Cell Mol Life Sci,2001,58(5-6):844-849.
22
Munzar M,Levy S,Rush R,et al. Clinical study of a urinary competitve ELISA for neural thread protein in Alzheimer disease[J].Neurol Clin Neurophysiol,2002,2002(1):2-8.
23
Ghanbari H,Ghanbari K,Beheshti I,et al. Biochemical assay for AD7C-NTP in urine as an Alzheimer's disease marker[J]. Journal of clinical laboratory analysis,1998,12(5):285-288.
24
Bartel DP. MicroRNAs: genomics,biogenesis,mechanism,and function[J].Cell,2004,116(2):281-297.
25
Ambros V. The functions of animal microRNAs[J]. Nature,2004,431(7006):350-355.
26
Ji R,Cheng Y,Yue J,et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation[J].Circ Res,2007,100(11):1579-1 5 8 8.
27
Lukiw WJ. Micro-RNA speciation in fetal,adult and Alzheimer's disease hippocampus[J].Neuroreport,2007,18(3):297-300.
28
Mitchell PS,Parkin RK,Kroh EM,et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proceed Nat Acad Sci,2008,105(30):10513-10518.
29
Saugstad JA. MicroRNAs as effectors of brain function with roles in ischemia and injury,neuroprotection,and neurodegeneration[J]. J Cerebral Blood Flow Metabol,2010,30(9):1564-1576.
30
Lim LP,Lau NC,Garrett-Engele P,et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs[J].Nature,2005,433(7027):769-773.
31
Wang WX,Huang Q,Hu Y,et al.Patterns of microRNA expression in normal and early Alzheimer's disease human temporal cortex: white matter versus gray matter[J].Acta Neuropathol,2011,121(2):193-205.
32
Hebert SS,Horre K,Nicolai L,et al. MicroRNA regulation of Alzheimer's Amyloid precursor protein expression[J]. Neurobiol Dis,2009,33(3):422-428.
33
Delay C,Calon F,Mathews P,et al.Alzheimer-specific variants in the 3'UTR of Amyloid precursor protein affect microRNA function[J].Mol Neurodegener,2011,6:70.
34
Wang WX,Rajeev BW,Stromberg AJ,et al. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1[J]. J Neurosci,2008,28(5):1213-1223.
35
Hébert SS,Horre K,Nicolai L,et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression[J]. Proc Natl Acad Sci U S A,2008,105(17):6415-6420.
36
Long JM,Ray B,Lahiri DK. MicroRNA-339-5p down-regulates protein expression of β-site amyloid precursor protein-cleaving enzyme 1(BACE1)in human primary brain cultures and is reduced in brain tissue specimens of Alzheimer disease subjects[J].J Biol Chem,2014,289(8):5184-5198.
37
Boissonneault V,Plante Ⅰ,Rivest S,et al. MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1[J].J Biol Chem,2009,284(4):1971-1981.
38
Sala Frigerio C,Lau P,Salta E,et al. Reduced expression of hsamiR-27a-3p in CSF of patients with Alzheimer disease[J]. Neurology,2013,81(24):2103-2106.
39
Banzhaf-Strathmann J,Benito E,May S,et al. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer's disease[J].EMBO J,2014,33(15):1667-1680.
40
Lukiw WJ,Zhao Y,Cui JG. An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells[J]. J Biol Chem,2008,283(46):3 1 3 1 5-3 1 3 2 2.
41
Guedes JR,Custodia CM,Silva RJ,et al. Early miR-155 upregulation contributes to neuroinflammation in Alzheimer's disease triple transgenic mouse model[J].Hum Mol Genet,2014,23(23):6286-6301.
42
Wang X,Liu P,Zhu H,et al. miR-34a,a microRNA up-regulated in a double transgenic mouse model of Alzheimer's disease,inhibits bc12 translation[J].Brain Res Bull,2009,80(4-5):268-273.
43
Lee ST,Chu K,Jung KH,et al. miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model[J]. Ann Neurol,2012,72(2):269-277.
44
Bekris LM,Lutz F,Montine TJ,et al. MicroRNA in Alzheimer's disease: an exploratory study in brain,cerebrospinal fluid and plasma[J].Biomarkers,2013,18(5):455-466.
45
Müller M,Kuiperij HB,Claassen JA,et al.MicroRNAs in Alzheimer's disease: differential expression in hippocampus and cell-free cerebrospinal fluid[J].Neurobiol Aging,2014,35(1):152-158.
46
Kiko T,Nakagawa K,Tsuduki T,et al. MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer's disease[J]. J Alzheimer's Dis,2014,39(2):253-259.
47
Liu CG,Song J,Zhang YQ,et al. MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer's disease[J].Mol Med Rep,2014,10(5):2395-2400.
48
Liu CG,Wang JL,Li L,et al. MicroRNA-384 regulates both amyloid precursor protein and beta-secretase expression and is a potential biomarker for Alzheimer's disease[J]. Int J Mol Med,2014,34(1):1 6 0-1 6 6.
49
Galimberti D,Villa C,Fenoglio C,et al. Circulating miRNAs as potential biomarkers in Alzheimer's disease[J]. J Alzheimer Dis,2014,42(4):1261-1267.
50
Bhatnagar S,Chertkow H,Schipper HM,et al. Increased microRNA-34c abundance in Alzheimer's disease circulating blood plasma[J].Front Mol Neurosci,2014,7:2.
51
Tan L,Yu JT,Tan MS,et al. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer's disease[J].JAlzheimers Dis,2014,40(4):1017-1027.
52
Leidinger P,Backes C,Deutscher S,et al.A blood based 12-miRNA signature ofAlzheimer disease patients[J].Genome Biol,2013,14(7):R78.
[1] 费扬, 赵晗希, 孙丽琴, 楼琴华, 胡骏程. 银杏叶提取物对糖尿病肾病患者的疗效及其对尿液外泌体miR-342-3p的干预研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 219-224.
[2] 白香妮, 孙巨军, 谢鹤, 李宏斌. 急性胰腺炎患者血清微小RNA-142-3p和磷脂酰肌醇3-激酶水平变化及对并发腹腔感染风险预测[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 222-228.
[3] 乌吉斯古楞, 哈斯高娃. mir-98-5p、ALKBH1在肝门部胆管癌组织中表达及与临床病理特征的关系[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(02): 184-187.
[4] 郝春艳, 吉泽, 成苏杭, 李文思, 王丹. 血清miR-155联合sCD14水平判断慢性阻塞性肺疾病预后的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 87-90.
[5] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[6] 李苒, 姜宇航, 陈泽浩, 何家恺, 闫珊珊, 鄢锦荣, 贾宝辉. 电针治疗阿尔茨海默病患者的先导性随机对照试验[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 218-224.
[7] 杨森, 阙玉梅, 丁莉, 王艺瑾, 侯庆宇. Hcy和AD7c-NTP在阿尔茨海默病诊断中的临床应用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 208-212.
[8] 王江波, 尹一鸣, 张冠群. 外周血生物标志物在阿尔茨海默病早期诊断中的价值[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 244-249.
[9] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[10] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
[11] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J/OL]. 中华临床医师杂志(电子版), 2023, 17(09): 1016-1020.
[12] 刘霖, 张文欢, 宋雅茹, 姜云璐. Apelin-13 在阿尔茨海默病中的神经保护作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 276-280.
[13] 陆静, 钟为慧, 赵杰, 曾玲晖. 髓系细胞触发受体2在β淀粉样蛋白病理致阿尔茨海默病中的作用机制[J/OL]. 中华老年病研究电子杂志, 2024, 11(01): 51-56.
[14] 赵晓晓, 邱嘉婷, 张懿姝, 张蓉, 张棚, 刘晓蕾. 丁苯酞在各类型认知障碍治疗中的应用研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 19-26.
[15] 曾德阳, 董贺千禧, 陶凉, 肖红艳, 曾燕, 鄢华. 中年心血管危险因素增加阿尔茨海默病相关痴呆的流行病学和机制研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 6-13.
阅读次数
全文


摘要