切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2016, Vol. 04 ›› Issue (03) : 159 -163. doi: 10.3877/cma.j.issn.2095-5820.2016.03.007

所属专题: 文献

综述

聚合酶链反应鉴定结核分枝杆菌常用靶基因序列的研究进展
严慧1, 朱庆义1,()   
  1. 1. 510330 广州金域医学检验中心 广州医科大学金域检验学院
  • 收稿日期:2016-08-05 出版日期:2016-08-28
  • 通信作者: 朱庆义
  • 基金资助:
    广东省科技计划项目资助课题(2014B030302009)

Comparative study of the target genes used in multiple polymerase chain reaction for the detection and discrimination of Mycobacterium

Hui Yan1, Qingyi Zhu1,()   

  1. 1. Guangzhou Kingmed Center for Clinical Laboratory, Kingmed School of Laboratory Medicine of Guangzhou Medical University, Guangzhou 510330, China
  • Received:2016-08-05 Published:2016-08-28
  • Corresponding author: Qingyi Zhu
  • About author:
    Corresponding author: Zhu Qingyi, Email:
引用本文:

严慧, 朱庆义. 聚合酶链反应鉴定结核分枝杆菌常用靶基因序列的研究进展[J]. 中华临床实验室管理电子杂志, 2016, 04(03): 159-163.

Hui Yan, Qingyi Zhu. Comparative study of the target genes used in multiple polymerase chain reaction for the detection and discrimination of Mycobacterium[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2016, 04(03): 159-163.

分枝杆菌种类繁多,至今已发现有150余种,包括结核分枝杆菌复合群、麻风分枝杆菌以及非结核分枝杆菌,而结核分枝杆菌复合群是引起人类结核病的主要病原菌。分子生物学技术的发展为实现结核分枝杆菌的快速鉴定提供了方向,建立了各种以核酸序列为靶基因,如IS6110、16S rRNA、16S-23S rRNA ITS、hsp65、rpoB和gyrB等的快速鉴定方法。本文对聚合酶链反应(PCR)检测方法中鉴定结核分枝杆菌常用靶基因序列鉴定方法的敏感度和特异度研究进展进行综述。

Mycobacterium is one of the most common human pathogens worldwide. There has been found more than 150 species, including M. tuberculosis complex (MTC), M. leprosy and nontuberculous mycobacteria (NTM). The MTC is the main pathogenic bacteria. There have been many reports of difficulty in differentiating closely related mycobacterial species. Therefore, molecular biological tools like polymerase chain reaction (PCR)-based assays are needed to develop for reliable and rapid detection and discrimination of MTC and NTM. PCR/multiple PCR methods targeting different genes have been used in routine diagnostic laboratories, including IS6110, 16S rRNA, 16S-23S rRNA ITS, hsp65, rpoB, gyrB and so on. Here we will review the comparative study of these targeting genes used in PCR detection methods.

1
Halstrom S, Price P, Thomson R. Review: Environmental mycobacteria as a cause of human infection [J]. Int J Mycobacteriol, 2015,4(2):81-91.
2
Soo PC, Horng YT, Chang KC, et al. A simple gold nanoparticle probes assay for identification of Mycobacterium tuberculosis and Mycobacterium tuberculosis complex from clinical specimens [J]. Mol Cell Probes, 2009,23(5):240-246.
3
Huard RC, Fabre M, de Haas P, et al. Novel genetic polymorphisms that further delineate the phylogeny of the Mycobacterium tuberculosis complex [J]. J Bacteriol, 2006,188(12):4271-4287.
4
Smith NH, Gordon SV, de la Rua-Domenech R, et al. Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis [J]. Nat Rev Microbiol, 2006,4(9):670-681.
5
Katti MK. Plasmids of mycobacteria [J]. J Med Microbiol, 2001, 50(6):575-576.
6
叶丰,陈昱,何度, 等. 应用荧光定量聚合酶链反应对疑似结核组织的DNA分析[J]. 中华病理学杂志, 2013,42(8):534-537.
7
Kim YN, Kim KM, Choi HN, et al. Clinical Usefulness of PCR for Differential Diagnosis of Tuberculosis and Nontuberculous Mycobacterial Infection in Paraffin-Embedded Lung Tissues [J]. J Mol Diagn, 2015,17(5):597-604.
8
Sinha P, Gupta A, Prakash P, et al. Differentiation of Mycobacterium tuberculosis complex from non-tubercular mycobacteria by nested multiplex PCR targeting IS6110, MTP40 and 32kD alpha antigen encoding gene fragments [J]. BMC infec Dis, 2016,16:123.
9
Choi Y, Hong SR, Jeon BY, et al. Conventional and real-time PCR targeting 16S ribosomal RNA for the detection of Mycobacterium tuberculosis complex [J]. Int J Tuberc Lung Dis, 2015,19(9):1102-1108, i-ii.
10
Gray TJ, Kong F, Jelfs P, et al. Improved identification of rapidly growing mycobacteria by a 16S-23S internal transcribed spacer region PCR and capillary gel electrophoresis [J]. PloS One, 2014,9(7):e102290.
11
Lin SY, Hwang SC, Yang YC, et al. Early detection of Mycobacterium tuberculosis complex in BACTEC MGIT cultures using nucleic acid amplification [J]. Eur J Clin Microbiol Infect Dis, 2016,35(6):977-984.
12
Nasr Esfahani B, Moghim S, Ghasemian Safaei H, et al. Phylogenetic Analysis of Prevalent Tuberculosis and Non-Tuberculosis Mycobacteria in Isfahan, Iran, Based on a 360 bp Sequence of the rpoB Gene [J]. Jundishapur J Microbiol, 2016,9(4):e30763.
13
Yin XM, Wu LJ, Zheng L, et al. Quantification of colony-forming units for M. tuberculosis complex using gyrB-based real-time PCR assay [J]. Int J Tuberc Lung Dis, 2016,20:967-72.
14
Sankar S, Kuppanan S, Balakrishnan B, et al. Analysis of sequence diversity among IS6110 sequence of Mycobacterium tuberculosis: possible implications for PCR based detection [J]. Bioinformation, 2011,6(7):283-285.
15
Meghdadi H, Khosravi AD, Ghadiri AA, et al. Detection of Mycobacterium tuberculosis in extrapulmonary biopsy samples using PCR targeting IS6110, rpoB, and nested-rpoB PCR Cloning [J]. Front Microbiol, 2015,6:675.
16
Djelouadji Z, Raoult D, Daffe M, et al. A single-step sequencing method for the identification of Mycobacterium tuberculosis complex species [J]. PLoS Negl Trop Dis, 2008,2(6):e253.
17
Liébana E, Aranaz A, Francis B, et al. Assessment of genetic markers for species differentiation within the Mycobacterium tuberculosis complex [J]. J Clin Microbiol, 1996,34(4):933-938.
18
Semret M, Turenne CY, Behr MA. Insertion sequence IS900 revisited [J]. J Clin Microbiol, 2006,44(3):1081-1083.
19
Fyfe JA, Lavender CJ, Johnson PD, et al. Development and application of two multiplex real-time PCR assays for the detection of Mycobacterium ulcerans in clinical and environmental samples [J]. Appl Environ Microbiol, 2007,73(15):4733-4740.
20
Gomez Garcia I, Gomez Mampaso E, Burgos Revilla J, et al. Tuberculous orchiepididymitis during 1978-2003 period: review of 34 cases and role of 16S rRNA amplification [J]. Urology, 2010,76(4):776-781.
21
Park JH, Shim TS, Lee SA, et al. Molecular characterization of Mycobacterium intracellulare-related strains based on the sequence analysis of hsp65, internal transcribed spacer and 16S rRNA genes [J]. J Med Microbiol, 2010,59(Pt 9):1037-1043.
22
van Hest R, van der Zanden A, Boeree M, et al. Mycobacterium heckeshornense infection in an immunocompetent patient and identification by 16S rRNA sequence analysis of culture material and a histopathology tissue specimen [J]. J Clin Microbiol, 2004,42(9):4386-4389.
23
Xiong L, Kong F, Yang Y, et al. Use of PCR and reverse line blot hybridization macroarray based on 16S-23S rRNA gene internal transcribed spacer sequences for rapid identification of 34 mycobacterium species [J]. J Clin Microbiol, 2006,44(10):3544-3550.
24
Varma-Basil M, Garima K, Pathak R, et al. Development of a novel PCR restriction analysis of the hsp65 gene as a rapid method to screen for the Mycobacterium tuberculosis complex and nontuberculous mycobacteria in high-burden countries [J]. J Clin Microbiol, 2013,51(4):1165-1170.
25
Senna SG, Battilana J, Costa JC, et al. Sequencing of hsp65 gene for identification of Mycobacterium species isolated from environmental and clinical sources in Rio de Janeiro, Brazil [J]. J Clin Microbiol, 2008,46(11):3822-3825.
26
Gomila M, Ramirez A, Lalucat J. Diversity of environmental Mycobacterium isolates from hemodialysis water as shown by a multigene sequencing approach [J]. Appl Environ Microbiol, 2007,73(12):3787-3797.
27
McNabb A, Eisler D, Adie K, et al. Assessment of partial sequencing of the Mycobacterium species isolated from clinical sources [J]. J Clin Microbiol, 2004,42(7):3000-3011.
28
Yamamoto S, Harayama S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains [J]. Appl Environ Microbiol, 1995,61(3):1104-1109.
29
尹小毛,刘志辉. 采用gyrB基因扩增快速鉴定结核分枝杆菌复合群的初步研究[J]. 实用医学杂志, 2010,26:4262-4264.
30
Abass NA, Suleiman KM, El Jalii IM. Differentiation of clinical Mycobacterium tuberculosis complex isolates by their GyrB polymorphism [J]. Indian J Med Microbiol, 2010,28(1):26-29.
31
陈素婷,聂文娟,尚媛媛,等. 脓肿分枝杆菌gyrA和gyrB基因突变与左氧氟沙星和莫西沙星耐药的相关性[J]. 中华结核和呼吸杂志, 2015,38(07):507-510.
32
Mokaddas E, Ahmad S. Development and evaluation of a multiplex PCR for rapid detection and differentiation of Mycobacterium tuberculosis complex members from non-tuberculous mycobacteria [J]. Jpn J Infect Dis, 2007,60(2-3):140-144.
33
Katoch VM, Parashar D, Chauhan DS, et al. Rapid identification of mycobacteria by gene amplification restriction analysis technique targeting 16S-23S ribosomal RNA internal transcribed spacer & flanking region [J]. Indian J Med Res, 2007,125(2):155-162.
34
Minh NN, Van Bac N, Son NT, et al. Molecular characteristics of rifampin- and isoniazid-resistant mycobacterium tuberculosis strains isolated in Vietnam [J]. J Clin Microbiol, 2012,50(3):598-601.
35
Parsons LM, Brosch R, Cole ST, et al. Rapid and simple approach for identification of Mycobacterium tuberculosis complex isolates by PCR-based genomic deletion analysis [J]. J Clin Microbiol, 2002,40(7):2339-2345.
36
Huard RC, Lazzarini LC, Butler WR, et al. PCR-based method to differentiate the subspecies of the Mycobacterium tuberculosis complex on the basis of genomic deletions [J]. J Clin Microbiol, 2003,41(4):1637-1650.
[1] 葛飞霞, 蒋银, 杨丹. 酶联免疫吸附测定法与PCR仪检测在乙型肝炎诊断中的临床应用[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 310-315.
[2] 汤艳芬, 赵雯, 马成杰, 刘刚, 陈奇, 刘菁, 薛天娇, 刘岩岩, 陈融佥, 王宇. 人类免疫缺陷病毒感染合并鸟分枝杆菌复合群病临床特点[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 348-353.
[3] 王俊文, 田原, 范子豪, 徐玲, 高耀, 曹亚玲, 潘桢桢, 张向颖, 宋岩, 任锋. 基于规律成簇的间隔短回文重复序列及其相关蛋白技术检测乙型肝炎病毒共价闭合环状DNA方法的建立[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 320-327.
[4] 谭洁, 詹森林, 邓国防, 张培泽. 抗干扰素γ自身抗体综合征导致哥伦比亚分枝杆菌播散性感染一例[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(03): 210-214.
[5] 欧阳航, 陈德波, 骆时木, 杨培东, 蒋燕成, 张志珊. 乳腺癌相关基因CK19与Vimentin mRNA联合检测在乳腺癌中的临床应用[J]. 中华普外科手术学杂志(电子版), 2021, 15(04): 422-425.
[6] 罗来邦, 王绪杨, 胡续光, 张友福, 徐志丹. 宏基因组二代测序早期筛查肝移植术后人类微小病毒B19感染临床研究[J]. 中华移植杂志(电子版), 2022, 16(06): 346-352.
[7] 张燕珍, 王锡携, 文小兰. 血清巨噬细胞迁移抑制因子对活动性肺结核分诊检测的意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 200-202.
[8] 洪青青, 姚超, 张新宝. 非结核分枝杆菌肺病患者流行病学临床特点及耐药情况分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 506-508.
[9] 陈众众, 闵凌峰, 刘家昌. 应用宏基因二代测序技术诊断胞内分枝杆菌型NTM肺病一例并文献复习[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 448-450.
[10] 赖宁, 庄泽钦, 钟典. 广州地区非结核分枝杆菌肺病微生物及临床特征分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 339-343.
[11] 曹冰, 张晓明, 梁富龙. 单细胞测序分析人类胚胎干细胞神经分化的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(01): 1-7.
[12] 包训迪, 吴丹丹, 江跃, 梁锁, 王超, 王舒, 王庆. 非结核分枝杆菌鉴定方法和病原谱分析[J]. 中华临床医师杂志(电子版), 2022, 16(01): 38-42.
[13] 郑婉珊, 殷茵, 涂兆伟, 曹彬. 选择适用于研究滋养层细胞合体化过程的内参基因的实验研究[J]. 中华产科急救电子杂志, 2022, 11(01): 46-52.
[14] 龚文娟, 陈宝荣, 孙慧颖, 郑燕华. 新型冠状病毒核酸检测阳性质控品污染原因分析及解决办法[J]. 中华临床实验室管理电子杂志, 2021, 09(04): 237-241.
[15] 余娟平, 李志强, 李龙, 魏琦, 都伟杰, 毕真, 李芳云, 方琼, 陈浩, 陈良军, 康卫灵, 王智慧, 蔡维文, 殷梅梅, 方婷, 王倩倩, 梅圣学, 李强, 常中宝, 申梦来, 程雅婷, 李晓华. 对新型冠状病毒核酸检测低基因扩增信号样本的再分析[J]. 中华临床实验室管理电子杂志, 2021, 09(04): 231-236.
阅读次数
全文


摘要