切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2016, Vol. 04 ›› Issue (03) : 153 -158. doi: 10.3877/cma.j.issn.2095-5820.2016.03.006

所属专题: 文献

综述

结核病实验室诊断研究进展
马爱静1, 赵雁林1,()   
  1. 1. 102206 北京,中国疾病预防控制中心国家结核病参比实验室
  • 收稿日期:2016-08-14 出版日期:2016-08-28
  • 通信作者: 赵雁林
  • 基金资助:
    国家十二五传染病重大专项资助课题(2015ZX100030002)

Progress in the laboratory diagnosis of tuberculosis

Aijing Ma1, Yanlin Zhao1,()   

  1. 1. National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing 102206, China
  • Received:2016-08-14 Published:2016-08-28
  • Corresponding author: Yanlin Zhao
  • About author:
    Corresponding author: Zhao Yanlin, Email:
引用本文:

马爱静, 赵雁林. 结核病实验室诊断研究进展[J]. 中华临床实验室管理电子杂志, 2016, 04(03): 153-158.

Aijing Ma, Yanlin Zhao. Progress in the laboratory diagnosis of tuberculosis[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2016, 04(03): 153-158.

结核病(tuberculosis, TB)是我国重点控制的重大传染性疾病之一。潜伏性结核分枝杆菌(Mycobacterium tuberculosis, MTB)感染和耐药结核病的非典型临床表现,导致TB的防治难度增加。早期准确诊断是TB正确有效治疗的基础和前提,也是降低TB传播的有效措施。随着分子生物学和免疫学的迅速发展,MTB病原学检查和药物敏感试验的时间极大地缩短。现对MTB的实验室诊断及新兴诊断技术进展阐述如下。

Tuberculosis (TB) is one of the major infectious diseases in China. The atypical clinical manifestations of latent mycobacterium tuberculosis (MTB) infection and drug-resistant tuberculosis led to increased difficulty in TB prevention and treatment. Early and accurate diagnosis is the basis and prerequisite for the correct treatment of TB and is also an effective way to reduce transmission. With the rapid development of molecular biology and immunology, the time for MTB pathogen examination and drug sensitivity test has been greatly shortened. The clinical and laboratory diagnosis as well as the development of new diagnostic techniques of MTB are described below.

1
World Health Organization. Global tuberculosis report 2016. Geneva: World Health Organization, 2016.

URL    
2
World Health Organization. Early detection of tuberculosis: an overview of approaches, guidelines and tools. Geneva: World Health Organization, 2011.

URL    
3
Gazi MA, Islam MR, Kibria MG, et al. General and advanced diagnostic tools to detect Mycobacterium tuberculosis and their drug susceptibility: a review [J]. Eur J Clin Microbiol Infect Dis, 2015,34(5):851-861.
4
Laifangbam S, Singh HL, Singh NB, et al. A comparative study of fluorescent microscopy with Ziehl-Neelsen staining and culture for the diagnosis of pulmonary tuberculosis [J]. Kathmandu Univ Med J [KUMJ], 2009,7(27):226-230.
5
Hooja S, Pal N, Malhotra B, et al. Comparison of Ziehl Neelsen & Auramine O staining methods on direct and concentrated smears in clinical specimens [J]. Indian J Tuberc, 2011,58(2):72-76.
6
Breuninger M, van Ginneken B, Philipsen RH, et al. Diagnostic accuracy of computer-aided detection of pulmonary tuberculosis in chest radiographs: a validation study from sub-Saharan Africa [J]. PLoS One, 2014,9(9): e106381.
7
Philipsen RH, Sanchez CI, Maduskar P, et al. Automated chest-radiography as a triage for Xpert testing in resource-constrained settings: a prospective study of diagnostic accuracy and costs [J]. Sci Rep, 2015,5:12215.
8
Raqib R, Rahman J, Kamaluddin AK, et al. Rapid diagnosis of active tuberculosis by detecting antibodies from lymphocyte secretions [J]. J Infect Dis, 2003,188(3):364-370.
9
Huebner RE, Schein MF, Bass JB Jr. The tuberculin skin test [J]. Clin Infect Dis, 1993,17(6): 968-975.
10
Lee E, Holzman RS. Evolution and current use of the tuberculin test [J]. Clin Infect Dis, 2002,34(3):365-370.
11
Pai M, Zwerling A, Menzies D. Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update [J]. Ann Intern Med, 2008,149(3):177-184.
12
Mishra AK, Driessen NN, Appelmelk BJ, et al. Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction [J]. FEMS Microbiol Rev, 2011,35(6):1126-1157.
13
Flores LL, Steingart KR, Dendukuri N, et al. Systematic review and meta-analysis of antigen detection tests for the diagnosis of tuberculosis [J]. Clin Vacc Immunol Cvi, 2011,18(10): 1616-1627.
14
Peter J, Theron G, Chanda D, et al. Test characteristics and potential impact of the urine LAM lateral flow assay in HIV-infected outpatients under investigation for TB and able to self-expectorate sputum for diagnostic testing [J]. BMC Infect Dis, 2015,15:262.
15
Minion J, Leung E, Talbot E, et al. Diagnosing tuberculosis with urine lipoarabinomannan: systematic review and meta-analysis [J]. Eur Respir J, 2011,38(5):1398-1405.
16
Siddiqi SH. MGIT procedure manual for BACTEC MGIT 960 TB System. Foundation for Innovative New Diagnostics [M]. Geneva: 2016-11].

URL    
17
Ogbaini-Emovon E. Current trends in the laboratory diagnosis of tuberculosis [J]. Benin J Postgraduate Med, 2009,11Suppl:79-90.
18
Ciftci IH, Karakece E. Comparative evaluation of TK SLC-L, a rapid liquid mycobacterial culture medium, with the MGIT system [J]. BMC Infect Dis, 2014,14:130.
19
Bwanga F, Haile M, Joloba ML, et al. Direct nitrate reductase assay versus microscopic observation drug susceptibility test for rapid detection of MDR-TB in Uganda [J]. PLoS One, 2011,6(5):e19565.
20
Leung E, Minion J, Benedetti A, et al. Microcolony culture techniques for tuberculosis diagnosis: a systematic review [J]. Int J Tuberc Lung Dis, 2012,16(1):16-23, i-iii.
21
Cui Z, Wang J, Zhu C, et al. Evaluation of a novel biphasic culture medium for recovery of mycobacteria: a multi-center study [J]. PLoS One, 2012,7(4):e36331.
22
Ranjan K, Sharma M. An approach to the detection of mycobacteria in clinically suspected cases of urinary tract infection in immunocompromised patients [J/OL]. Bacteriology, 2010,1(9):WMC00616.

URL    
23
Arias M, Mello FC, Pavon A, et al. Clinical evaluation of the microscopic-observation drug-susceptibility assay for detection of tuberculosis [J]. Clin Infect Dis, 2007,44(5):674-680.
24
Ardizzoni E, Mulders W, Kotrikadze T, et al. The thin-layer agar method for direct phenotypic detection of multi- and extensively drug-resistant tuberculosis [J]. Int J Tuberc Lung Dis, 2015,19(12):1547-1552.
25
Blakemore R, Story E, Helb D, et al. Evaluation of the analytical performance of the Xpert MTB/RIF assay [J]. J Clin Microbiol, 2010,48(7):2495-2501.
26
Boehme CC, Nicol MP, Nabeta P, et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study [J]. Lancet, 2011,377(9776):1495-505.
27
Lawn SD, Mwaba P, Bates M, et al. Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test [J]. Lancet Infect Dis, 2013,13(4):349-361.
28
World Health Organization. WHO policy statement: molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis. Geneva: World Health Organization, 2015.
29
Quezada CM, Kamanzi E, Mukamutara J, et al. Implementation validation performed in Rwanda to determine whether the INNO-LiPA Rif. TB line probe assay can be used for detection of multidrug-resistant Mycobacterium tuberculosis in low-resource countries [J]. J Clin Microbiol, 2007,45(9):3111-3114.
30
Dubois Cauwelaert N, Ramarokoto H, Ravololonandriana P, et al. DNA extracted from stained sputum smears can be used in the MTBDRplus assay [J]. J Clin Microbiol, 2011,49(10): 3600-3603.
31
Lee YS, Kang HR, Lee SH, et al. Diagnostic usefulness of the GenoType MTBDRplus assay for detecting drug-resistant tuberculosis using AFB smear-negative specimens with positive TB-PCR result [J]. Infect Dis (Lond), 2016,48(5):350-355.
32
Mark PN. New developments in the laboratory diagnosis of tuberculosis [J]. CME, 2010,28(10):246-250.
33
Ling DI, Zwerling AA, Pai M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis [J]. Eur Respir J, 2008,32(5):1165-1174.
34
Morgan M, Kalantri S, Flore L, et al. A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis [J]. BMC Infect Dis, 2005,5:62.
35
Gryadunov D, Mikhailovich V, Lapa S, et al. Evaluation of hybridisation on oligonucleotide microarrays for analysis of drug-resistant Mycobacterium tuberculosis [J]. Clin Microbiol Infect, 2005,11(7):531-539.
36
Troesch A, Nguyen H, Miyada CG, et al. Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays [J]. J Clin Microbiol, 1999,37(1):49-55.
37
Sougakoff W, Rodrigue M, Truffot-Pernot C, et al. Use of a high-density DNA probe array for detecting mutations involved in rifampicin resistance in Mycobacterium tuberculosis [J]. Clin Microbiol Infect, 2004,10(4):289-294.
38
Kouzaki Y, Maeda T, Sasaki H, et al. A Simple and Rapid Identification Method for Mycobacterium bovis BCG with Loop-Mediated Isothermal Amplification [J]. PLoS One, 2015,10(7):e0133759.
39
Iwamoto T, Sonobe T, Hayashi K. Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples [J]. J Clin Microbiol, 2003,41(6):2616-2622.
40
World Health Organization. The use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis: policy guidance. Geneva: World Health Organization, 2016.

URL    
[1] 杨高怡. 超声在结核病诊疗中的应用[J]. 中华医学超声杂志(电子版), 2019, 16(01): 34-34.
[2] 吴奇桥, 黄子达, 杨滨, 李文波, 张文明. 原位免疫荧光杂交技术诊断人工关节假体周围感染[J]. 中华关节外科杂志(电子版), 2020, 14(01): 73-77.
[3] 庄建龙, 傅婉玉, 陈文莉, 江矞颖, 曾书红, 王元白, 吴小霞. 罕见染色体13q22.1-13q31.3缺失综合征男婴的诊治及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(03): 337-342.
[4] 赵倩颖, 郄明蓉. 上皮性卵巢癌的病理及分子诊断[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(06): 605-611.
[5] 马亚楠, 侍效春, 刘晓清. 系统性红斑狼疮合并活动性结核病研究进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 1-5.
[6] 张丽帆, 杨峥蓉, 刘晓清. 程序性死亡受体1/程序性死亡配体在结核分枝杆菌感染免疫中的作用和宿主导向治疗前景[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(03): 145-148.
[7] 金小琳, 杨智彬, 詹淑华, 朱丹, 何海英, 殷水泽, 马世武. 1 501例初治住院结核病患者肝功能异常的影响因素[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(05): 394-400.
[8] 艾亮, 成柯, 张盛. 再次肾移植术后并发移植后淋巴增殖性疾病伴结核病一例[J]. 中华移植杂志(电子版), 2022, 16(01): 46-48.
[9] 肖敏, 杨松, 陈杨, 李同心, 杨仕明, 林辉. 结核病患者中靶向调控维生素D受体的microRNA的初步筛选[J]. 中华肺部疾病杂志(电子版), 2020, 13(06): 731-736.
[10] 吴桂辉, 黄涛, 罗槑, 蔡阳, 任利红. 活动性肺结核患者病情严重程度与维生素D及T细胞亚群的相关性分析[J]. 中华肺部疾病杂志(电子版), 2020, 13(04): 510-512.
[11] 任成山, 林辉, 杨仕明. 结核病的流行特征与耐多药的窘迫及其策略[J]. 中华肺部疾病杂志(电子版), 2019, 12(03): 269-274.
[12] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[13] 刘湘, 张胜威, 陈琳, 姚群峰, 宁美微. 结合新型冠状病毒感染疫情时事提升分子诊断学课程教学效果的探索[J]. 中华临床实验室管理电子杂志, 2023, 11(03): 175-180.
[14] 樊茹, 刘红伟, 邱万, 李晓非. I-SPOT.TB与T-SPOT.TB试剂盒在结核病诊断中的应用价值及其诊断一致性分析[J]. 中华临床实验室管理电子杂志, 2022, 10(04): 210-214.
[15] 宋言峥, 朱益军, 陈辉, 李洪伟, 王琳, 石磊, 万来忆, 李蕾蕾. 肺结核外科的微创伤疗法(附39例报告)[J]. 中华胸部外科电子杂志, 2020, 07(02): 71-75.
阅读次数
全文


摘要