切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2016, Vol. 04 ›› Issue (03) : 168 -172. doi: 10.3877/cma.j.issn.2095-5820.2016.03.009

所属专题: 文献

综述

肺炎链球菌表型多样化的分子机制:遗传与表观遗传策略的共同作用
李靖1, 张敬仁1,()   
  1. 1. 100084 北京,清华大学医学院传染病研究中心
  • 收稿日期:2016-08-11 出版日期:2016-08-28
  • 通信作者: 张敬仁

Molecular mechanisms of phenotypic diversification in Streptococcus pneumoniae: the impacts of genetic and epigenetic variations

Jing Li1, Jingren Zhang1,()   

  1. 1. Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
  • Received:2016-08-11 Published:2016-08-28
  • Corresponding author: Jingren Zhang
  • About author:
    Corresponding author: Zhang Jingren , Email:
引用本文:

李靖, 张敬仁. 肺炎链球菌表型多样化的分子机制:遗传与表观遗传策略的共同作用[J]. 中华临床实验室管理电子杂志, 2016, 04(03): 168-172.

Jing Li, Jingren Zhang. Molecular mechanisms of phenotypic diversification in Streptococcus pneumoniae: the impacts of genetic and epigenetic variations[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2016, 04(03): 168-172.

肺炎链球菌采取高度的遗传可塑性来产生表型多样性。其遗传可塑性体现在该物种具有高度多变的基因组序列,进而产生不同菌株间包括耐药性、荚膜多糖和表面蛋白的抗原性、菌落形态、致病性等的表型多样性。肺炎链球菌的自然转化介导的从环境中获取外源DNA的能力是使其产生遗传可塑性的主要机制。我们实验室最近的单分子测序研究发现肺炎链球菌能够通过DNA甲基转移酶基因的重组产生具有不同染色体DNA甲基化图案(甲基化谱)的子代细胞,这些表观遗传水平上的可逆性变化进而产生透明菌落与非透明菌落之间的可逆性相转变。产生透明菌落与非透明菌落的肺炎链球菌在宿主上皮细胞的黏附和上呼吸道的定植等致病性相关表型方面存在很大差异。在这篇综述中,我们描述了肺炎链球菌如何利用遗传和表观遗传机制增加其表型多样性,重点总结DNA重组所导致的表观遗传变异与菌落形态相转变在该病原体定植与致病性方面的贡献。

Streptococcus pneumoniae (S. pneumoniae) uses genetic plasticity to achieve phenotypic diversity. The genetic plasticity is reflected by the highly variable genome sequences of this species, which leads to the variation in drug resistance, antigenicity of capsular polysaccharides and surface proteins, colony morphology, and pathogenicity among different pneumococcal strains. Natural transformation of S. pneumoniae is a major known mechanism behind the genetic plasticity, which is characterized by uptake of the exogenous DNA from the environment. Recent studies from our laboratory have revealed that S. pneumoniae is capable of endogenous DNA recombinations in the DNA methyltransferase genes, thereby generating daughter cells with variable genome methylation patterns (or methylomes). These epigenetic switches lead to pneumococcal reversible phase variation between opaque and transparent colony phenotypes, which are associated with differential capabilities in epithelial adherence and nasopharyngeal colonization. In this review, we describe how S. pneumoniae enhances the phenotypic diversity by the genetic and epigenetic mechanisms with a focus on the impact of DNA inversion-driven epigenetic switch and thereby phase variation on pneumococcal pathogenesis.

图1 透射电子显微镜下19F血清型肺炎链球菌菌株ST556的细胞图(×50 000倍)
图2 解剖显微镜下19F血清型肺炎链球菌菌株ST556菌落形态图(×5倍)
图3 肺炎链球菌遗传可塑性机制示意图
1
Li J, Yuan L, Yu S, et al. Nasal carriage of Streptococcus pneumoniae among children in Beijing [J]. Chin Med J (Engl), 2001,114(11):1196-1200.
2
Musher DM. Streptococcus pneumonia. In Mandell GL, Bennett JE, Dolin RD (ed), Principles and Practice of Infectious Diseases [M]. New York: 7th ed, vol 2. Elsevier Churchill Livingstone, 2010:2623-2642.
3
Oʹ Brien KL, Wolfson LJ, Watt JP, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates [J]. Lancet, 2009,374(9693):893-902.
4
Walker CL, Rudan I, Liu L, et al. Global burden of childhood pneumonia and diarrhea [J]. Lancet, 2013,381(9875):1405-1416.
5
Lynch JP, 3rd Zhanel GG. Streptococcus pneumoniae: does antimicrobial resistance matter [J]. Semin Respir Crit Care Med, 2009,30(2):210-238.
6
Croucher NJ, Harris SR, Fraser C, et al. Rapid pneumococcal evolution in response to clinical interventions [J]. Science, 2011,331(6016): 430-434.
7
Claverys JP, Prudhomme M, Mortier-Barriere I, et al. Adaptation to the environment: Streptococcus pneumoniae, a paradigm for recombination-mediated genetic plasticity [J]. Mol Microbiol, 2000,35(2):251-259.
8
Klugman KP. Pneumococcal resistance to antibiotics [J]. Clin Microbiol Rev, 1990,3(2):171-196.
9
Jacobs MR, Koornhof HJ, Robins-Browne RM, et al. Emergence of multiply resistant pneumococci [J]. N Engl J Med, 1978,299(14):735-740.
10
Doern GV, Heilmann KP, Huynh HK, et al. Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in the United States during 1999--2000, including a comparison of resistance rates since 1994--1995 [J]. Antimicrob Agents Chemother, 2001,45(6):1721-1729.
11
Hammerschmidt S, Wolff S, Hocke A, et al. Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells [J]. Infect Immun, 2005,73(8):4653-4667.
12
Croney CM, Nahm MH, Juhn SK, et al. Invasive and noninvasive Streptococcus pneumoniae capsule and surface protein diversity following the use of a conjugate vaccine [J]. Clin Vaccine Immunol, 2013,20(11):1711-1718.
13
Briles DE, Tart RC, Swiatlo E, et al. Pneumococcal diversity: considerations for new vaccine strategies with emphasis on pneumococcal surface protein A (PspA) [J]. Clin Microbiol Rev, 1998,11(14):645-657.
14
Henderson IR, Owen P, Nataro JP. Molecular switches--the ON and OFF of bacterial phase variation [J]. Mol Microbiol, 1999,33(5):919-932.
15
van der Woude MW, Baumler AJ. Phase and antigenic variation in bacteria [J]. Clin Microbiol Rev, 2004,17(3):581-611.
16
Simon M, Zieg J, Silverman M, et al. Phase variation: evolution of a controlling element [J]. Science, 1980,209(4463):1370-1374.
17
van der Woude MW, Henderson IR. Regulation and function of Ag43 (flu) [J]. Annu Rev Microbiol, 2008,62(62):153-169.
18
Weiser JN, Austrian R, Sreenivasan PK, et al. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization [J]. Infect Immun, 1994,62(6):2582-2589.
19
Tong HH, Weiser JN, James MA, et al. Effect of influenza A virus infection on nasopharyngeal colonization and otitis media induced by transparent or opaque phenotype variants of Streptococcus pneumoniae in the chinchilla model [J]. Infect Immun, 2001,69(1):602-606.
20
Weiser JN, Bae D, Epino H, et al. Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumonia [J]. Infect Immun, 2001,69(9):5430-5439.
21
Kim JO, Weiser JN. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumonia [J]. J Infect Dis, 1998,177:368-377.
22
Weiser JN. Phase variation in colony opacity by Streptococcus pneumonia [J]. Microb Drug Resist, 1998,4(2):129-135.
23
Manso AS, Chai MH, Atack JM, et al. A random six-phase switch regulates pneumococcal virulence via global epigenetic changes [J]. Nat Commun, 2014,5:5055.
24
Li J, Li JW, Feng Z, et al. Epigenetic Switch Driven by DNA Inversions Dictates Phase Variation in Streptococcus pneumonia [J]. PLoS Pathog, 2016,12(7):e1005762.
25
Paton JC, Morona JK. Streptococcus pneumoniae capsular polysaccharide. In Fischetti VA, Novick RP, Ferretti JJ, et al. Gram-Positive Pathogens [M]. Washington, D.C: 2nd ed. ASM Press, 2006:241-252.
26
Tong HH, Weiser JN, James MA, et al. Effect of influenza A virus infection on nasopharyngeal colonization and otitis media induced by transparent or opaque phenotype variants of streptococcus pneumoniae in the chinchilla model [J]. Infect Immun, 2001,69(1):602-606.
27
Weiser JN. Phase variation of Streptococcus pneumoniae. In Fischetti VA, Novick RP, Ferretti JJ, et al. Gram-Positive Pathogens [M]. Washington, D.C: Am Soc Microbiol Press, 2006:268-274.
28
Overweg K, Pericone CD, Verhoef GG, et al. Differential protein expression in phenotypic variants of Streptococcus pneumonia [J]. Infect Immun, 2000,68(8):4604-4610.
29
Pericone CD, Bae D, Shchepetov M, et al. Short-sequence tandem and nontandem DNA repeats and endogenous hydrogen peroxide production contribute to genetic instability of Streptococcus pneumonia [J]. J Bacteriol, 2002,184(16):4392-4399.
30
Pericone CD, Park S, Imlay JA, et al. Factors contributing to hydrogen peroxide resistance in Streptococcus pneumoniae include pyruvate oxidase (SpxB) and avoidance of the toxic effects of the fenton reaction [J]. J Bacteriol, 2003,185(23):6815-6825.
31
Shoemaker NB, Smith MD, Guild WR. Organization and transfer of heterologous chloramphenicol and tetracycline resistance genes in pneumococcus [J]. J Bacteriol, 1979,139(2):432-441.
32
Smith MD, Shoemaker NB, Burdett V, et al. Transfer of plasmids by conjugation in Streptococcus pneumonias [J]. Plasmid, 1980,3(1):70-79.
33
Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules [J]. Science, 2009,323(5910):133-138.
34
Fang G, Munera D, Friedman DI, et al. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing [J]. Nat Biotechnol, 2012,30(12):1232-1239.
35
Lluch-Senar M, Luong K, Llorens-Rico V, et al. Comprehensive methylome characterization of Mycoplasma genitalium and Mycoplasma pneumoniae at single-base resolution [J]. PLoS Genet, 2013,9(1):e1003191.
36
Murray IA, Clark TA, Morgan RD, et al. The methylomes of six bacteria [J]. Nucleic Acids Res, 2012,40(22):11450-11462.
37
Feng Z, Li J, Zhang JR, et al. qDNAmod: a statistical model-based tool to reveal intercellular heterogeneity of DNA modification from SMRT sequencing data [J]. Nucleic Acids Res, 2014,42(22):13488-13499.
38
Arber W, Dussoix D. Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage lambda [J]. J Mol Biol, 1962,5:18-36.
39
Murray NE. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle) [J]. Microbiol Mol Biol Rev, 2000,64(2):412-434.
40
Loenen WA, Raleigh EA. The other face of restriction: modification-dependent enzymes [J]. Nucleic Acids Res, 2014,42(1):56-69.
[1] 李玲, 曹广志, 何雯. 神经营养因子-3在肺炎链球菌性脑膜炎脑损伤及治疗后表达的动态变化[J]. 中华妇幼临床医学杂志(电子版), 2010, 06(05): 333-337.
[2] 韩菲, 戴锦程, 孙杭, 谈华, 刘雪梅. 224例肺炎链球菌感染患儿临床特征及耐药分析[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(05): 357-361.
[3] 陈沃铭, 刘海澄, 邓小燕, 郭旭光. 肺炎链球菌感染研究进展[J]. 中华临床实验室管理电子杂志, 2022, 10(01): 34-40.
阅读次数
全文


摘要