1 |
Zhao C, Xie Y, Zhang F, et al. Investigation of antibiotic resistance, serotype distribution, and genetic characteristics of 164 invasive Streptococcus Pneumoniae from North China between April 2016 and October 2017[J]. Infect Drug Resist, 2020, 13: 2117-2128.
|
2 |
Ganaie F, Saad JS, McGee L, et al. A new pneumococcal capsule type, 10D, is the 100th serotype and has a large cps fragment from an oral streptococcus[J]. mBio, 2020, 11(3): e00937-20.
|
3 |
Zhao C, Li Z, Zhang F, et al. Serotype distribution and antibiotic resistance of Streptococcus Pneumoniae isolates from 17 Chinese cities from 2011 to 2016[J]. BMC Infect Dis, 2017, 17: 804.
|
4 |
Paton JC, Trappetti C. Streptococcus pneumoniae capsular polysaccharide[J]. Microbiol Spectr, 2019, 7(2).
|
5 |
Rana JS, Khan SS, Lloyd-Jones DM, et al. Changes in mortality in top 10 causes of death from 2011 to 2018[J]. J Gen intern Med, 2021, 36(8): 2517-2518.
|
6 |
Regunath H, Oba Y. Community-acquired pneumonia[M]. Treasure Island (FL): StatPearls Publishing, 2022.
|
7 |
Kaur R, Morris M, Pichichero ME. Epidemiology of acute otitis media in the postpneumococcal conjugate vaccine era[J]. Pediatrics, 2017, 140(3): e20170181.
|
8 |
Kwambana-Adams BA, Mulholland EK, Satzke C. State-of-the-art in the pneumococcal field: proceedings of the 11(th) international symposium on pneumococci and pneumococcal diseases (ISPPD-11)[J]. Pneumonia (Nathan), 2020, 12: 2.
|
9 |
Fu J, Li L, Liang Z, et al. Etiology of acute otitis media and phenotypic-molecular characterization of Streptococcus pneumoniae isolated from children in Liuzhou, China[J]. BMC Infect Dis, 2019, 19(1): 168.
|
10 |
Loughran AJ, Orihuela CJ, Tuomanen EI. Streptococcus pneumoniae: invasion and inflammation[M]. John Wiley & Sons, Ltd, 2019.
|
11 |
Tvedskov E, Hovmand N, Benfield T, et al. Pneumococcal carriage among children in low and lower-middle-income countries: A systematic review[J]. Int J Infect Dis, 2021, 115: 1-7.
|
12 |
Brissac T, Orihuela CJ. In vitro adhesion, invasion, and transcytosis of Streptococcus Pneumoniae with host cells[J]. Methods Mol Biol, 2019, 1968: 137-146.
|
13 |
Li J, Zhang JR. Phase variation of Streptococcus Pneumoniae[J]. Microbiol Spectr, 2019, 7(1).
|
14 |
Kim JO, Romero-Steiner S, Sorensen UB, et al. Relationship between cell surface carbohydrates and intrastrain variation on opsonophagocytosis of Streptococcus pneumoniae[J]. Infect Immun, 1999, 67(5): 2327-2333.
|
15 |
Rosenow C, Ryan P, Weiser JN, et al. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae[J]. Mol Microbiol, 1997, 25(5): 819-829.
|
16 |
Janesch P, Rouha H, Badarau A, et al. Assessing the function of pneumococcal neuraminidases NanA, NanB and NanC in in vitro and in vivo lung infection models using monoclonal antibodies[J]. Virulence, 2018, 9(1): 1521-1538.
|
17 |
Sharapova Y, Suplatov D, Svedas V. Neuraminidase A from Streptococcus Pneumoniae has a modular organization of catalytic and lectin domains separated by a flexible linker[J]. FEBS J, 2018, 285(13): 2428-2445.
|
18 |
Wren JT, Blevins LK, Pang B, et al. Pneumococcal neuraminidase a (NanA) promotes biofilm formation and synergizes with influenza A virus in nasal colonization and middle ear infection[J]. Infect Immun, 2017, 85(4).
|
19 |
Tong HH, McIver MA, Fisher LM, et al. Effect of lacto-N-neotetraose, asialoganglioside-GM1 and neuraminidase on adherence of otitis media-associated serotypes of Streptococcus pneumoniae to chinchilla tracheal epithelium[J]. Microb Pathog, 1999, 26(2): 111-119.
|
20 |
Kietzman CC, Gao G, Mann B, et al. Dynamic capsule restructuring by the main pneumococcal autolysin LytA in response to the epithelium[J]. Nat Commun, 2016, 7: 10859.
|
21 |
Kim JO, Weiser JN. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus Pneumoniae[J]. J Infect Dis, 1998, 177(2): 368-377.
|
22 |
Ren B, Szalai AJ, Hollingshead SK, et al. Effects of PspA and antibodies to PspA on activation and deposition of complement on the pneumococcal surface[J]. Infect Immun, 2004, 72(1): 114-122.
|
23 |
Tu AH, Fulgham RL, McCrory MA, et al. Pneumococcal surface protein A inhibits complement activation by Streptococcus Pneumoniae[J]. Infect Immun, 1999, 67(9): 4720-4724.
|
24 |
Honsa ES, Johnson MD, Rosch JW. The roles of transition metals in the physiology and pathogenesis of Streptococcus Pneumoniae[J]. Front Cell Infect Microbiol, 2013, 3: 92.
|
25 |
Yang XY, Li N, Xu JY, et al. Lipoprotein SPD_1609 of Streptococcus Pneumoniae promotes adherence and invasion to epithelial cells contributing to bacterial virulence[J]. Front Microbiol, 2019, 10: 1769.
|
26 |
Orihuela CJ, Mahdavi J, Thornton J, et al. Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models[J]. J Clin Invest, 2009, 119(6): 1638-1646.
|
27 |
Ring A, Weiser JN, Tuomanen EI. Pneumococcal trafficking across the blood-brain barrier. Molecular analysis of a novel bidirectional pathway[J]. J Clin Invest, 1998, 102(2): 347-360.
|
28 |
Iovino F, Molema G, Bijlsma JJ. Platelet endothelial cell adhesion molecule-1, a putative receptor for the adhesion of Streptococcus Pneumoniae to the vascular endothelium of the blood-brain barrier[J]. Infect Immun, 2014, 82(9): 3555-3566.
|
29 |
Iovino F, Engelen-Lee JY, Brouwer M, et al. pIgR and PECAM-1 bind to pneumococcal adhesins RrgA and PspC mediating bacterial brain invasion[J]. J Exp Med, 2017, 214(6): 1619-1630.
|
30 |
Hyams C, Camberlein E, Cohen JM, et al. The Streptococcus pneumoniae capsule inhibits complement activity and neutrophil phagocytosis by multiple mechanisms[J]. Infect Immun, 2010, 78(2): 704-715.
|
31 |
Moorthy AN, Rai P, Jiao H, et al. Capsules of virulent pneumococcal serotypes enhance formation of neutrophil extracellular traps during in vivo pathogenesis of pneumonia[J]. Oncotarget, 2016, 7(15): 19327-19340.
|
32 |
de Vos AF, Dessing MC, Lammers AJ, et al. The polysaccharide capsule of streptococcus pneumonia partially impedes MyD88-mediated immunity during pneumonia in mice[J]. PLoS One, 2015, 10(2): e118181.
|
33 |
Zafar MA, Hamaguchi S, Zangari T, et al. Capsule type and amount affect shedding and transmission of Streptococcus Pneumoniae[J]. mBio, 2017, 8(4): e00989-17.
|
34 |
Dickson K, Lehmann C. Inflammatory response to different toxins in experimental sepsis models[J]. Int J Mol Sci, 2019, 20(18): 4341.
|
35 |
Heim VJ, Stafford CA, Nachbur U. NOD signaling and cell death[J]. Front Cell Dev Biol, 2019, 7: 208.
|
36 |
魏桂芳, 沈荣. 肺炎链球菌相关毒力因子及其作用的研究进展[J]. 微生物学免疫学进展, 2016, 44(5): 69-75.
|
37 |
Nishimoto AT, Rosch JW, Tuomanen EI. Pneumolysin: pathogenesis and therapeutic target[J]. Front Microbiol, 2020, 11: 1543.
|
38 |
Subramanian K, Neill DR, Malak HA, et al. Pneumolysin binds to the mannose receptor C type 1 (MRC-1) leading to anti-inflammatory responses and enhanced pneumococcal survival[J]. Nat Microbiol, 2019, 4(1): 62-70.
|
39 |
Burgos J, Garcia-Perez JN, di Lauro SG, et al. Usefulness of sofia pneumococcal FIA(R) test in comparison with BinaxNOW(R) pneumococcal test in urine samples for the diagnosis of pneumococcal pneumonia[J]. Eur J Clin Microbiol Infect Dis, 2018, 37(7): 1289-1295.
|
40 |
Sinclair A, Xie X, Teltscher M, et al. Systematic review and meta-analysis of a urine-based pneumococcal antigen test for diagnosis of community-acquired pneumonia caused by Streptococcus pneumoniae[J]. J Clin Microbiol, 2013, 51(7): 2303-2310.
|
41 |
Romero HD, Soler-Palacin P, Burgos CJ, et al. Detection of Streptococcus pneumoniae antigen in pleural fluid: usefulness of an immunofluorescence-based lateral flow assay for the diagnosis of pneumococcal pneumonia[J]. Diagn Microbiol Infect Dis, 2020, 98(4): 115162.
|
42 |
廖远泉. 感染性肺炎病原学实验室诊断——肺炎链球菌检测技术进展[J]. 临床检验杂志(电子版), 2018, 7(1): 1-6.
|
43 |
Pavliakova D, Giardina PC, Moghazeh S, et al. Development and validation of 13-plex luminex-based assay for measuring human serum antibodies to Streptococcus pneumoniae capsular polysaccharides[J]. mSphere, 2018, 3(4): e00128-18.
|
44 |
Tan CY, Immermann FW, Sebastian S, et al. Evaluation of a validated luminex-based multiplex immunoassay for measuring immunoglobulin G antibodies in serum to pneumococcal capsular polysaccharides[J]. mSphere, 2018, 3(4): e00127-18.
|
45 |
Campanero-Rhodes MA, Lacoma A, Prat C, et al. Development and evaluation of a microarray platform for detection of serum antibodies against Streptococcus pneumoniae capsular polysaccharides[J]. Anal Chem, 2020, 92(11): 7437-7443.
|
46 |
Mauffrey F, Fournier E, Demczuk W, et al. Comparison of sequential multiplex PCR, sequetyping and whole genome sequencing for serotyping of Streptococcus pneumoniae[J]. PLoS One, 2017, 12(12): e189163.
|
47 |
Park D, Kim SH, Bae IK, et al. Evaluation of modified sequential multiplex PCR for Streptococcus pneumoniae serotyping[J]. Jpn J Infect Dis, 2019, 72(4): 224-227.
|
48 |
王良玉, 郭东星, 蔚然, 等. 荧光定量PCR检测肺炎链球菌感染方法的建立[J]. 中国妇幼健康研究, 2016, 27(10): 1184-1186.
|
49 |
Murphy J, O' Rourke S, Corcoran M, et al. Evaluation of the clinical utility of a real-time PCR Assay for the diagnosis of Streptococcus pneumoniae bacteremia in children: A retrospective diagnostic accuracy study[J]. Pediatr Infect Dis J, 2018, 37(2): 153-156.
|
50 |
Habets MN, Cremers A, Bos MP, et al. A novel quantitative PCR assay for the detection of Streptococcus pneumoniae using the competence regulator gene target comX[J]. J Med Microbiol, 2016, 65(2): 129-136.
|
51 |
Varghese R, Jayaraman R, Veeraraghavan B. Current challenges in the accurate identification of Streptococcus pneumoniae and its serogroups/serotypes in the vaccine era[J]. J Microbiol Methods, 2017, 141: 48-54.
|
52 |
Sadowy E, Hryniewicz W. Identification of Streptococcus pneumoniae and other mitis streptococci: importance of molecular methods[J]. Eur J Clin Microbiol Infect Dis, 2020, 39(12): 2247-2256.
|
53 |
Yahiaoui RY, Goessens WH, Stobberingh EE, et al. Differentiation between streptococcus pneumoniae and other viridans group Streptococci by matrix-assisted laser desorption/ionization time of flight mass spectrometry[J]. Clin Microbiol Infect, 2020, 26(8): 1081-1088.
|
54 |
Osowicki J, Steer AC. International survey of paediatric infectious diseases consultants on the management of community-acquired pneumonia complicated by pleural empyema[J]. J Paediatr Child Health, 2019, 55(1): 66-73.
|
55 |
Jakhar SK, Pandey M, Shah D, et al. Etiology and risk factors determining poor outcome of severe pneumonia in under-five children[J]. Indian J Pediatr, 2018, 85(1): 20-24.
|
56 |
Kim L, McGee L, Tomczyk S, et al. Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in Pre- and Post-Conjugate vaccine eras: a United States perspective[J]. Clin. Microbiol Rev, 2016, 29(3): 525-552.
|
57 |
Kim GL, Seon SH, Rhee DK. Pneumonia and Streptococcus pneumoniae vaccine[J]. Arch Pharm Res, 2017, 40(8): 885-893.
|
58 |
Navalkele P, Ozgonenel B, McGrath E, et al. Invasive Pneumococcal disease in patients with sickle cell disease[J]. J Pediatr Hematol Oncol, 2017, 39(5): 341-344.
|
59 |
Olarte L, Barson WJ, Barson RM, et al. Pneumococcal pneumonia requiring hospitalization in US children in the 13-valent pneumococcal conjugate vaccine era[J]. Clin Infect Dis, 2017, 64(12): 1699-1704.
|
60 |
Hayward S, Thompson LA, McEachern A. Is 13-Valent pneumococcal conjugate vaccine (PCV13) combined with 23-valent pneumococcal polysaccharide vaccine (PPSV23) Superior to PPSV23 alone for reducing incidence or severity of pneumonia in older adults? A Clin-IQ[J]. J Patient Cent Res Rev, 2016, 3(2): 111-115.
|
61 |
Groves N, Sheppard CL, Litt D, et al. Evolution of Streptococcus pneumoniae serotype 3 in England and Wales: A major vaccine evader[J]. Genes (Basel), 2019, 10(11): 845.
|
62 |
刘莹, 董方, 史伟, 等. 北京儿童医院2013-2017年住院儿童肺炎链球菌分离株的血清型分析[J]. 中华全科医学, 2018, 16(4): 514-517.
|
63 |
陈凯乐, 邵雪君, 张锡彦, 等. 2013-2015年苏州地区儿童肺炎链球菌血清型与耐药监测[J]. 中国初级卫生保健, 2019, 33(8): 106-109.
|
64 |
Seco B, Xu FF, Grafmuller A, et al. Sequential linkage of carbohydrate antigens to mimic capsular polysaccharides: Toward semisynthetic glycoconjugate vaccine candidates against Streptococcus pneumoniae serotype 14[J]. ACS Chem Biol, 2020, 15(9): 2395-2405.
|