切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2022, Vol. 10 ›› Issue (01) : 34 -40. doi: 10.3877/cma.j.issn.2095-5820.2022.01.007

综述

肺炎链球菌感染研究进展
陈沃铭1, 刘海澄1, 邓小燕1, 郭旭光2,()   
  1. 1. 510182 广东广州,广州医科大学金域检验学院
    2. 510182 广东广州,广州医科大学金域检验学院;510150 广东广州,广州医科大学附属第三医院检验科
  • 收稿日期:2021-05-06 出版日期:2022-02-28
  • 通信作者: 郭旭光
  • 基金资助:
    国家自然科学基金青年项目(81700004)

Research advances of Streptococcus pneumoniae infection

Woming Chen1, Haicheng Liu1, Xiaoyan Deng1, Xuguang Guo2,()   

  1. 1. KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou Guangdong 510182, China
    2. KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou Guangdong 510182, China; Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Guangdong 510150, China
  • Received:2021-05-06 Published:2022-02-28
  • Corresponding author: Xuguang Guo
引用本文:

陈沃铭, 刘海澄, 邓小燕, 郭旭光. 肺炎链球菌感染研究进展[J]. 中华临床实验室管理电子杂志, 2022, 10(01): 34-40.

Woming Chen, Haicheng Liu, Xiaoyan Deng, Xuguang Guo. Research advances of Streptococcus pneumoniae infection[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2022, 10(01): 34-40.

肺炎链球菌(S.pn)作为细菌性肺炎、中耳炎、脑膜炎和败血症的主要病原体,其感染一直以来是全球不可忽视的健康问题。近年来,肺炎链球菌毒力和耐药性的不断增强,对公共健康的威胁越来越大。PCR和基因测序等基因组领域新的实验室诊断方法逐渐受到重视,本文旨在通过对肺炎链球菌的病原学、黏附和侵袭方式、毒力因子以及现有实验室诊断方法和防治手段进行分析,从而为深入理解肺炎链球菌以及寻找有效的防治措施提供参考。

Streptococcus pneumoniae (S.pn), as the major pathogen of bacterial pneumonia, otitis media, meningitis and septicemia, its infection has always been a global health problem that cannot be ignored. In recent years, the growing virulence and resistance of Streptococcus pneumoniae has posed an increasing threat to public health. New laboratory diagnostic approaches in the genomic field such as PCR and gene sequencing are gradually gaining attention. This article aims to provide reference for in-depth understanding of Streptococcus pneumoniae and seeking effective prevention and treatment measures by analyzing the etiology, adhesion and invasion modes, virulence factors, and existing laboratory diagnosis and prevention methods of Streptococcus pneumoniae.

1
Zhao C, Xie Y, Zhang F, et al. Investigation of antibiotic resistance, serotype distribution, and genetic characteristics of 164 invasive Streptococcus Pneumoniae from North China between April 2016 and October 2017[J]. Infect Drug Resist, 2020, 13: 2117-2128.
2
Ganaie F, Saad JS, McGee L, et al. A new pneumococcal capsule type, 10D, is the 100th serotype and has a large cps fragment from an oral streptococcus[J]. mBio, 2020, 11(3): e00937-20.
3
Zhao C, Li Z, Zhang F, et al. Serotype distribution and antibiotic resistance of Streptococcus Pneumoniae isolates from 17 Chinese cities from 2011 to 2016[J]. BMC Infect Dis, 2017, 17: 804.
4
Paton JC, Trappetti C. Streptococcus pneumoniae capsular polysaccharide[J]. Microbiol Spectr, 2019, 7(2).
5
Rana JS, Khan SS, Lloyd-Jones DM, et al. Changes in mortality in top 10 causes of death from 2011 to 2018[J]. J Gen intern Med, 2021, 36(8): 2517-2518.
6
Regunath H, Oba Y. Community-acquired pneumonia[M]. Treasure Island (FL): StatPearls Publishing, 2022.
7
Kaur R, Morris M, Pichichero ME. Epidemiology of acute otitis media in the postpneumococcal conjugate vaccine era[J]. Pediatrics, 2017, 140(3): e20170181.
8
Kwambana-Adams BA, Mulholland EK, Satzke C. State-of-the-art in the pneumococcal field: proceedings of the 11(th) international symposium on pneumococci and pneumococcal diseases (ISPPD-11)[J]. Pneumonia (Nathan), 2020, 12: 2.
9
Fu J, Li L, Liang Z, et al. Etiology of acute otitis media and phenotypic-molecular characterization of Streptococcus pneumoniae isolated from children in Liuzhou, China[J]. BMC Infect Dis, 2019, 19(1): 168.
10
Loughran AJ, Orihuela CJ, Tuomanen EI. Streptococcus pneumoniae: invasion and inflammation[M]. John Wiley & Sons, Ltd, 2019.
11
Tvedskov E, Hovmand N, Benfield T, et al. Pneumococcal carriage among children in low and lower-middle-income countries: A systematic review[J]. Int J Infect Dis, 2021, 115: 1-7.
12
Brissac T, Orihuela CJ. In vitro adhesion, invasion, and transcytosis of Streptococcus Pneumoniae with host cells[J]. Methods Mol Biol, 2019, 1968: 137-146.
13
Li J, Zhang JR. Phase variation of Streptococcus Pneumoniae[J]. Microbiol Spectr, 2019, 7(1).
14
Kim JO, Romero-Steiner S, Sorensen UB, et al. Relationship between cell surface carbohydrates and intrastrain variation on opsonophagocytosis of Streptococcus pneumoniae[J]. Infect Immun, 1999, 67(5): 2327-2333.
15
Rosenow C, Ryan P, Weiser JN, et al. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae[J]. Mol Microbiol, 1997, 25(5): 819-829.
16
Janesch P, Rouha H, Badarau A, et al. Assessing the function of pneumococcal neuraminidases NanA, NanB and NanC in in vitro and in vivo lung infection models using monoclonal antibodies[J]. Virulence, 2018, 9(1): 1521-1538.
17
Sharapova Y, Suplatov D, Svedas V. Neuraminidase A from Streptococcus Pneumoniae has a modular organization of catalytic and lectin domains separated by a flexible linker[J]. FEBS J, 2018, 285(13): 2428-2445.
18
Wren JT, Blevins LK, Pang B, et al. Pneumococcal neuraminidase a (NanA) promotes biofilm formation and synergizes with influenza A virus in nasal colonization and middle ear infection[J]. Infect Immun, 2017, 85(4).
19
Tong HH, McIver MA, Fisher LM, et al. Effect of lacto-N-neotetraose, asialoganglioside-GM1 and neuraminidase on adherence of otitis media-associated serotypes of Streptococcus pneumoniae to chinchilla tracheal epithelium[J]. Microb Pathog, 1999, 26(2): 111-119.
20
Kietzman CC, Gao G, Mann B, et al. Dynamic capsule restructuring by the main pneumococcal autolysin LytA in response to the epithelium[J]. Nat Commun, 2016, 7: 10859.
21
Kim JO, Weiser JN. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus Pneumoniae[J]. J Infect Dis, 1998, 177(2): 368-377.
22
Ren B, Szalai AJ, Hollingshead SK, et al. Effects of PspA and antibodies to PspA on activation and deposition of complement on the pneumococcal surface[J]. Infect Immun, 2004, 72(1): 114-122.
23
Tu AH, Fulgham RL, McCrory MA, et al. Pneumococcal surface protein A inhibits complement activation by Streptococcus Pneumoniae[J]. Infect Immun, 1999, 67(9): 4720-4724.
24
Honsa ES, Johnson MD, Rosch JW. The roles of transition metals in the physiology and pathogenesis of Streptococcus Pneumoniae[J]. Front Cell Infect Microbiol, 2013, 3: 92.
25
Yang XY, Li N, Xu JY, et al. Lipoprotein SPD_1609 of Streptococcus Pneumoniae promotes adherence and invasion to epithelial cells contributing to bacterial virulence[J]. Front Microbiol, 2019, 10: 1769.
26
Orihuela CJ, Mahdavi J, Thornton J, et al. Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models[J]. J Clin Invest, 2009, 119(6): 1638-1646.
27
Ring A, Weiser JN, Tuomanen EI. Pneumococcal trafficking across the blood-brain barrier. Molecular analysis of a novel bidirectional pathway[J]. J Clin Invest, 1998, 102(2): 347-360.
28
Iovino F, Molema G, Bijlsma JJ. Platelet endothelial cell adhesion molecule-1, a putative receptor for the adhesion of Streptococcus Pneumoniae to the vascular endothelium of the blood-brain barrier[J]. Infect Immun, 2014, 82(9): 3555-3566.
29
Iovino F, Engelen-Lee JY, Brouwer M, et al. pIgR and PECAM-1 bind to pneumococcal adhesins RrgA and PspC mediating bacterial brain invasion[J]. J Exp Med, 2017, 214(6): 1619-1630.
30
Hyams C, Camberlein E, Cohen JM, et al. The Streptococcus pneumoniae capsule inhibits complement activity and neutrophil phagocytosis by multiple mechanisms[J]. Infect Immun, 2010, 78(2): 704-715.
31
Moorthy AN, Rai P, Jiao H, et al. Capsules of virulent pneumococcal serotypes enhance formation of neutrophil extracellular traps during in vivo pathogenesis of pneumonia[J]. Oncotarget, 2016, 7(15): 19327-19340.
32
de Vos AF, Dessing MC, Lammers AJ, et al. The polysaccharide capsule of streptococcus pneumonia partially impedes MyD88-mediated immunity during pneumonia in mice[J]. PLoS One, 2015, 10(2): e118181.
33
Zafar MA, Hamaguchi S, Zangari T, et al. Capsule type and amount affect shedding and transmission of Streptococcus Pneumoniae[J]. mBio, 2017, 8(4): e00989-17.
34
Dickson K, Lehmann C. Inflammatory response to different toxins in experimental sepsis models[J]. Int J Mol Sci, 2019, 20(18): 4341.
35
Heim VJ, Stafford CA, Nachbur U. NOD signaling and cell death[J]. Front Cell Dev Biol, 2019, 7: 208.
36
魏桂芳, 沈荣. 肺炎链球菌相关毒力因子及其作用的研究进展[J]. 微生物学免疫学进展, 2016, 44(5): 69-75.
37
Nishimoto AT, Rosch JW, Tuomanen EI. Pneumolysin: pathogenesis and therapeutic target[J]. Front Microbiol, 2020, 11: 1543.
38
Subramanian K, Neill DR, Malak HA, et al. Pneumolysin binds to the mannose receptor C type 1 (MRC-1) leading to anti-inflammatory responses and enhanced pneumococcal survival[J]. Nat Microbiol, 2019, 4(1): 62-70.
39
Burgos J, Garcia-Perez JN, di Lauro SG, et al. Usefulness of sofia pneumococcal FIA(R) test in comparison with BinaxNOW(R) pneumococcal test in urine samples for the diagnosis of pneumococcal pneumonia[J]. Eur J Clin Microbiol Infect Dis, 2018, 37(7): 1289-1295.
40
Sinclair A, Xie X, Teltscher M, et al. Systematic review and meta-analysis of a urine-based pneumococcal antigen test for diagnosis of community-acquired pneumonia caused by Streptococcus pneumoniae[J]. J Clin Microbiol, 2013, 51(7): 2303-2310.
41
Romero HD, Soler-Palacin P, Burgos CJ, et al. Detection of Streptococcus pneumoniae antigen in pleural fluid: usefulness of an immunofluorescence-based lateral flow assay for the diagnosis of pneumococcal pneumonia[J]. Diagn Microbiol Infect Dis, 2020, 98(4): 115162.
42
廖远泉. 感染性肺炎病原学实验室诊断——肺炎链球菌检测技术进展[J]. 临床检验杂志(电子版), 2018, 7(1): 1-6.
43
Pavliakova D, Giardina PC, Moghazeh S, et al. Development and validation of 13-plex luminex-based assay for measuring human serum antibodies to Streptococcus pneumoniae capsular polysaccharides[J]. mSphere, 2018, 3(4): e00128-18.
44
Tan CY, Immermann FW, Sebastian S, et al. Evaluation of a validated luminex-based multiplex immunoassay for measuring immunoglobulin G antibodies in serum to pneumococcal capsular polysaccharides[J]. mSphere, 2018, 3(4): e00127-18.
45
Campanero-Rhodes MA, Lacoma A, Prat C, et al. Development and evaluation of a microarray platform for detection of serum antibodies against Streptococcus pneumoniae capsular polysaccharides[J]. Anal Chem, 2020, 92(11): 7437-7443.
46
Mauffrey F, Fournier E, Demczuk W, et al. Comparison of sequential multiplex PCR, sequetyping and whole genome sequencing for serotyping of Streptococcus pneumoniae[J]. PLoS One, 2017, 12(12): e189163.
47
Park D, Kim SH, Bae IK, et al. Evaluation of modified sequential multiplex PCR for Streptococcus pneumoniae serotyping[J]. Jpn J Infect Dis, 2019, 72(4): 224-227.
48
王良玉, 郭东星, 蔚然, 等. 荧光定量PCR检测肺炎链球菌感染方法的建立[J]. 中国妇幼健康研究, 2016, 27(10): 1184-1186.
49
Murphy J, O' Rourke S, Corcoran M, et al. Evaluation of the clinical utility of a real-time PCR Assay for the diagnosis of Streptococcus pneumoniae bacteremia in children: A retrospective diagnostic accuracy study[J]. Pediatr Infect Dis J, 2018, 37(2): 153-156.
50
Habets MN, Cremers A, Bos MP, et al. A novel quantitative PCR assay for the detection of Streptococcus pneumoniae using the competence regulator gene target comX[J]. J Med Microbiol, 2016, 65(2): 129-136.
51
Varghese R, Jayaraman R, Veeraraghavan B. Current challenges in the accurate identification of Streptococcus pneumoniae and its serogroups/serotypes in the vaccine era[J]. J Microbiol Methods, 2017, 141: 48-54.
52
Sadowy E, Hryniewicz W. Identification of Streptococcus pneumoniae and other mitis streptococci: importance of molecular methods[J]. Eur J Clin Microbiol Infect Dis, 2020, 39(12): 2247-2256.
53
Yahiaoui RY, Goessens WH, Stobberingh EE, et al. Differentiation between streptococcus pneumoniae and other viridans group Streptococci by matrix-assisted laser desorption/ionization time of flight mass spectrometry[J]. Clin Microbiol Infect, 2020, 26(8): 1081-1088.
54
Osowicki J, Steer AC. International survey of paediatric infectious diseases consultants on the management of community-acquired pneumonia complicated by pleural empyema[J]. J Paediatr Child Health, 2019, 55(1): 66-73.
55
Jakhar SK, Pandey M, Shah D, et al. Etiology and risk factors determining poor outcome of severe pneumonia in under-five children[J]. Indian J Pediatr, 2018, 85(1): 20-24.
56
Kim L, McGee L, Tomczyk S, et al. Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in Pre- and Post-Conjugate vaccine eras: a United States perspective[J]. Clin. Microbiol Rev, 2016, 29(3): 525-552.
57
Kim GL, Seon SH, Rhee DK. Pneumonia and Streptococcus pneumoniae vaccine[J]. Arch Pharm Res, 2017, 40(8): 885-893.
58
Navalkele P, Ozgonenel B, McGrath E, et al. Invasive Pneumococcal disease in patients with sickle cell disease[J]. J Pediatr Hematol Oncol, 2017, 39(5): 341-344.
59
Olarte L, Barson WJ, Barson RM, et al. Pneumococcal pneumonia requiring hospitalization in US children in the 13-valent pneumococcal conjugate vaccine era[J]. Clin Infect Dis, 2017, 64(12): 1699-1704.
60
Hayward S, Thompson LA, McEachern A. Is 13-Valent pneumococcal conjugate vaccine (PCV13) combined with 23-valent pneumococcal polysaccharide vaccine (PPSV23) Superior to PPSV23 alone for reducing incidence or severity of pneumonia in older adults? A Clin-IQ[J]. J Patient Cent Res Rev, 2016, 3(2): 111-115.
61
Groves N, Sheppard CL, Litt D, et al. Evolution of Streptococcus pneumoniae serotype 3 in England and Wales: A major vaccine evader[J]. Genes (Basel), 2019, 10(11): 845.
62
刘莹, 董方, 史伟, 等. 北京儿童医院2013-2017年住院儿童肺炎链球菌分离株的血清型分析[J]. 中华全科医学, 2018, 16(4): 514-517.
63
陈凯乐, 邵雪君, 张锡彦, 等. 2013-2015年苏州地区儿童肺炎链球菌血清型与耐药监测[J]. 中国初级卫生保健, 2019, 33(8): 106-109.
64
Seco B, Xu FF, Grafmuller A, et al. Sequential linkage of carbohydrate antigens to mimic capsular polysaccharides: Toward semisynthetic glycoconjugate vaccine candidates against Streptococcus pneumoniae serotype 14[J]. ACS Chem Biol, 2020, 15(9): 2395-2405.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 蒋佳纯, 王晓冰, 陈培荣, 许世豪. 血清学指标联合常规超声及超声造影评分诊断原发性干燥综合征的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 622-630.
[3] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[4] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[5] 杨雪, 张伟, 尚培中, 宋创业, 尚丹丹, 张蔚. 胆囊十二指肠瘘结石经瘘口排出后自愈一例报道[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 707-708.
[6] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[7] 许丁伟, 马江云, 李新成, 黄洁. Alagille综合征疑诊为先天性胆道闭锁一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 681-687.
[8] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[9] 李达, 张大涯, 陈润祥, 张晓冬, 黄士美, 陈晨, 曾凡, 陈世锔, 白飞虎. 海南省东方市幽门螺杆菌感染现状的调查与相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 858-864.
[10] 卓徐鹏, 刘颖, 任菁菁. 感染性疾病与老年人低蛋白血症的相关性研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 896-899.
[11] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[12] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[13] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
[14] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[15] 杨艳丽, 陈昱, 赵若辰, 杜伟, 马海娟, 许珂, 张莉芸. 系统性红斑狼疮合并血流感染的危险因素及细菌学分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 694-699.
阅读次数
全文


摘要