切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2022, Vol. 10 ›› Issue (01) : 41 -49. doi: 10.3877/cma.j.issn.2095-5820.2022.01.008

综述

流感病毒即时检验研究进展
丁信1, 伍圣桢2, 杨子峰1, 关文达1,()   
  1. 1. 510120 广州医科大学附属第一医院;510182 广州市传染性疾病临床快速诊断与预警重点实验室 广州医科大学金域检验学院
    2. 510182 广州市传染性疾病临床快速诊断与预警重点实验室 广州医科大学金域检验学院
  • 收稿日期:2021-05-29 出版日期:2022-02-28
  • 通信作者: 关文达
  • 基金资助:
    广州市科技局基础研究计划(202102100003)

Research progress of Point-of-care testing of influenza virus

Xin Ding1, Shengzhen Wu2, Zifeng Yang1, Wenda Guan1,()   

  1. 1. First Affiliated Hospital of Guangzhou Medical University, Guangzhou Guangdong 510120, China; Guangzhou Key Laboratory For Clinical Rapid Diagnosis And Early Warning of Infectious Diseases KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou Guangdong 510182, China
    2. Guangzhou Key Laboratory For Clinical Rapid Diagnosis And Early Warning of Infectious Diseases KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou Guangdong 510182, China
  • Received:2021-05-29 Published:2022-02-28
  • Corresponding author: Wenda Guan
引用本文:

丁信, 伍圣桢, 杨子峰, 关文达. 流感病毒即时检验研究进展[J]. 中华临床实验室管理电子杂志, 2022, 10(01): 41-49.

Xin Ding, Shengzhen Wu, Zifeng Yang, Wenda Guan. Research progress of Point-of-care testing of influenza virus[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2022, 10(01): 41-49.

流行性感冒是由流感病毒引起的一种传播快、传染力强的人类呼吸道传染病,可在全球范围造成巨大的生命和财产损失。世界卫生组织已将开发针对呼吸道病毒的即时检验(POCT)列为优先事项。POCT对流感样患者进行快速、准确的诊断,对预防和控制流感病毒的传播以及减少重症病人的发生发展有重要意义。基于免疫学的流感病毒POCT快速、简便但灵敏度低,基于检测核酸的流感POCT方便快捷,弥补了免疫学POCT灵敏度低的缺点,未来通过优化成本效益可在临床POCT环境中大量应用。现对目前用于诊断流感病毒的正在应用和开发研究的POCT方法进行综述。

Influenza is a rapidly spreading and highly infectious human respiratory infectious disease caused by influenza viruses, which can cause huge loss of life and property on a global scale. The World Health Organization has prioritized the development of point-of-care testing (POCT) for respiratory viruses. The rapid and accurate diagnosis of influenza-like patients by POCT is of great significance for preventing and controlling the spread of influenza virus and reducing the occurrence and development of severely ill patients. Influenza POCT based on immunology is fast, simple but low sensitivity. Influenza POCT based on nucleic acid detection is convenient and quick, which makes up for the shortcomings of low sensitivity of immunology POCT. In the future, through optimization of cost-effectiveness, it can be applied in a large number of clinical immediate testing environments. This article summarizes the POCT methods that are currently being applied and developing diagnosis of influenza viruses.

表1 流感病毒传统实验室检测方法3
图1 POCT场所6
表2 商业POCT检测方法比较
图2 中国国家药品监督管理总局2021年1月31日官网批准上市的流感病毒POCT堆积柱状图12
图3 美国食品药品监督管理局2021年2月4日官网批准上市的流感病毒POCT堆积柱状图17
表3 正在发展的POCT技术
表4 发展中的流感POCT生物芯片技术
项目 原理 特点 作者
生物传感器技术 靶DNA通过PCR产生标记有生物素的核酸产物,在传感器中PCR产物与特异性探针结合,该探针被磁珠上共价结合的特异性寡核苷酸捕获,通过链霉亲和素-碱性磷酸酶与PCR产物相结合,碱性磷酸酶可切割底物的磷酸基团产生电流信号,电化学传感器通过检测电流信号对PCR产物进行定量。但该设备缺乏RNA逆转录功能。

检测速度快(16 min),

但只能检测DNA

J. A. MacLeod34
生物芯片技术 基于RT-PCR的微流控芯片 以检测多呼吸道病毒,但缺乏自动提取核酸的功能 Hardick35
生物芯片技术 为将逆转录引物共价固定在聚乙二醇水凝胶颗粒表面,并将封闭了PCR引物在内的低熔点琼脂糖凝胶胶囊(low melti-ng point agarose,LMPA)引入至上述颗粒中,在逆转录过程中水凝胶颗粒上的逆转录引物与靶RNA进行逆转录反应,由于逆转录反应温度低于LMPA的熔点不会使PCR引物释放出来,当温度上升至PCR反应温度时PCR引物可从熔融的LMPA中释放并以游离形式参与PCR反应。 大量减少了传统RT-PCR反应时逆转录引物、PCR引物和靶RNA在逆转录时可能产生的非特异性产物。该技术还可以通过使用单色荧光光学系统在30 min内有效的进行18种一步qRT-PCR Junsun Kim36
生物芯片技术 基于芯片的一步法多重RT-PCR技术,并根据荧光信号判断结果 在23 min内完成反应,但缺乏自动提取核酸的功能 Soon-Hwan Kwon37
生物芯片技术 利用磁性和标记有不同血凝素抗体的体积大小不同的磁珠在磁场中分离流感病毒血凝素,在微流控芯片上建立了可同时检测和分离多重流感血凝素(HA)的免疫自动检测方法 特异性高、抗干扰能力强、重复性好。H7N9 HA的检出浓度低至3.4 ng/ml,H9N2 HA的检出浓度为4.5 ng/ml Shuibing Wang38
生物芯片技术 利用双适配子设计了一个完整的磁珠微流控系统,样品中存在甲型流感病毒时,可在芯片上形成适配子-H1N1病毒-适配子结合复合物,并通过荧光信号表达 检测时间短(30 min),无需人工干预,检测成本低,灵敏度是常规血清学诊断的103 Yi-Ting Tseng39
生物芯片技术 一种基于芯片的检测系统,名为iROAD,该系统使用基于逆转录的RPA技术,以无标记和实时的方式同时进行病毒RNA的扩增和检测 检测限是实时逆转录-PCR方法的10倍,可用于快速分析(<20 min),但缺乏自动提取核酸的功能 Bonhan Koo40
生物芯片技术 多重呼吸道病毒检测的LAMP集成微流控芯片系统(LAMP-integrated microfluidic chip system formultiplexed respiratory virus assays,LMCS-MRVA),该系统包括用于核酸提取的磁珠、与LAMP技术结合的八通道微流控阵列芯片,以及实时对结果颜色的变化进行比色分析 该检测系统通过制作相对独立、完全密封的反应室,避免了LAMP反应时的气溶胶污染、试剂蒸发和交叉污染。该系统对咽拭子标本中2~4 fg/μl的检出限在1 h内即可完成,特异性(100%)和灵敏度(96%)高 Wang R19
生物芯片技术 一种使用等温扩增(LAMP)方法的微流控设备。 该系统速度快(<40 min),体积小(19.3×16.5×12.3 cm3),由锂(Li)离子电池供电,可通过智能手机上的软件控制反应时间、温度,实时监控LAMP反应状态并观察检测结果,可由非专业人员操作且可定性和定量检测病原体。检测甲型流感病毒H1N1的LOD(Limitation of Detection,LOD)为3.2×10-3 HAU(hemagglutinating units,HAU),检测MRSA的LOD为30 CFU(colony-forming units,CFU) Yu-Dong Ma26
数字流感病毒计数(digital influenza virus counting,DIViC)方法 一种数字流感病毒计数(digital influenza virus counting,DIViC)方法,该方法可以检测无抗体存在的单个病毒颗粒。将病毒随机捕获在飞升反应器阵列装置内孵育几分钟后测定神经氨酸酶的荧光信号。通过分析600 000个反应器,其实际检测限达到了103(PFU)/mL的水平。系统配备一个基于智能手机的移动成像平台(mobileimaging platform,MobIP),从智能手机获得的图像结果保存为JPEG文件,将图像数据传输到台式计算机后,确定总荧光强度以进行分析。 基于智能手机的移动成像平台MobIP能够对牛碱性磷酸酶和数字流感病毒计数DIViC进行定量数字生物测定。与使用常规荧光显微镜的DIViC相比,使用MobIP进行DIViC的检测效率为60%。但配备MobIP的DIViC的灵敏度仍比商业快速流感诊断测试高100倍 Yoshihiro Minagawa41
1
Iuliano AD, Roguski KM, Chang HH, et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study[J]. Lancet, 2018, 391(10127): 1285-1300.
2
Fan VY, Jamison DT, Summers LH. The inclusive cost of pandemic influenza risk[R]. Massachusetts: National Bureau of Economic Research, 2016.
3
Dziabowska K, Czaczyk E, Nidzworski D. Detection methods of human and animal influenza virus-current trends[J]. Biosensors (Basel), 2018, 8(4): 94.
4
王江, 徐轶, 陈俊峰, 等. 流感病毒实验室检测方法研究进展[J]. 中华医院感染学杂志, 2020, 30(2): 308-312.
5
郭筱彤, 刘培玉, 马红梅. 即时检测—便携式血糖仪的使用与管理现状[J]. 天津护理, 2020, 28(1): 123-125.
6
International Organization for Standardization. ISO/TS 22583: 2019(en) Guidance for supervisors and operators of point-of-care testing(POCT) devices[S]. Geneva: International Organization for Standardization, 2019.
7
Brendish NJ, Schiff HF, Clark TW. Point-of-care testing for respiratory viruses in adults: The current landscape and future potential[J]. J Infect, 2015, 71(5): 501-510.
8
Basile K, Kok J, Dwyer DE. Point-of-care diagnostics for respiratory viral infections[J]. Expert Rev Mol Diagn, 2018, 18(1): 75-83.
9
王圆圆, 张义华, 方遒, 等. 两种流感病毒快速检测试剂盒在甲型流感病毒检测中的比较研究[J]. 中国病毒病杂志, 2019, 9(6): 454-460.
10
Pinsky BA, Hayden RT. Cost-effective respiratory virus testing[J]. J Clin Microbiol, 2019, 57(9): e00373-19.
11
Young S, Illescas P, Nicasio J, et al. Diagnostic accuracy of the real-time PCR cobas® Liat® Influenza A/B assay and the Alere i Influenza A&B NEAR isothermal nucleic acid amplification assay for the detection of influenza using adult nasopharyngeal specimens[J]. J Clin Virol, 2017, 94: 86-90.
12
国家药品监督管理总局[EB/OL].

URL    
13
Moore C. Point-of-care tests for infection control: should rapid testing be in the laboratory or at the front line?[J]. J Hosp Infect, 2013, 85(1): 1-7.
14
Bell JJ, Anderson EJ, Greene WH, et al. Multicenter clinical performance evaluation of BD Veritor system for rapid detection of respiratory syncytial virus[J]. J Clin Virol, 2014, 61(1): 113-117.
15
Ryu SW, Suh IB, Ryu SM, et al. Comparison of three rapid influenza diagnostic tests with digital readout systems and one conventional rapid influenza diagnostic test[J]. J Clin Lab Anal, 2018, 32(2): e22234.
16
Gómez S, Prieto C, Vera C, et al. Evaluation of a new rapid diagnostic test for the detection of influenza and RSV[J]. Enferm Infecc Microbiol Clin, 2016, 34(5): 298-302.
17
AccessGUDID[EB/OL].

URL    
18
Sharma V, Chaudhry D, Kaushik S. Evaluation of clinical applicability of reverse transcription-loop-mediated isothermal amplification assay for detection and subtyping of Influenza A viruses[J]. J Virol Methods, 2018, 253: 18-25.
19
Wang R, Zhao R, Li Y, et al. Rapid detection of multiple respiratory viruses based on microfluidic isothermal amplification and a real-time colorimetric method[J]. Lab Chip, 2018, 18(22): 3507-3515.
20
Jokela P, Vuorinen T, Waris M, et al. Performance of the Alere i influenza A&B assay and mariPOC test for the rapid detection of influenza A and B viruses[J]. J Clin Virol, 2015, 70: 72-76.
21
Bruning AHL, Leeflang MMG, Vos JMBW, et al. Rapid tests for influenza, respiratory syncytial virus, and other respiratory viruses: a systematic review and meta-analysis[J]. Clin Infect Dis, 2017, 65(6): 1026-1032.
22
Bruning AHL, de Kruijf WB, van Weert H, et al. Diagnostic performance and clinical feasibility of a point-of-care test for respiratory viral infections in primary health care[J]. Fam Pract, 2017, 34(5): 558-563.
23
Nelson PP, Rath BA, Fragkou PC, et al. Current and future point-of-care tests for emerging and new respiratory viruses and future perspectives[J]. Front Cell Infect Microbiol, 2020, 10: 181.
24
Zhuo Z, Wang J, Chen W, et al. A rapid on-site assay for the detection of influenza a by capillary convective pcr[J]. Mol Diagn Ther, 2018, 22(2): 225-234.
25
Melchers WJG, Kuijpers J, Sickler JJ, et al. Lab-in-a-tube: real-time molecular point-of-care diagnostics for influenza A and B using the cobas® Liat® system[J]. J Med Virol, 2017, 89(8): 1382-1386.
26
Ma YD, Li KH, Chen YH, et al. A sample-to-answer, portable platform for rapid detection of pathogens with a smartphone interface[J]. Lab Chip, 2019, 19(22): 3804-3814.
27
Elf S, Auvinen P, Jahn L, et al. Development and evaluation of a rapid nucleic acid amplification method to detect influenza A and B viruses in human respiratory specimens[J]. Diagn Microbiol Infect Dis, 2018, 92(1): 37-42.
28
Qiu X, Zhang S, Mei L, et al. Characterization and analysis of real-time capillary convective PCR toward commercialization[J]. Biomicrofluidics, 2017, 11(2): 024103.
29
Takemura K, Adegoke O, Takahashi N, et al. Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses[J]. Biosens Bioelectron, 2017, 89(Pt 2): 998-1005.
30
Uhm M, Lee J M, Lee J, et al. Ultrasensitive electrical detection of hemagglutinin for point-of-care detection of influenza virus based on a CMP-NANA probe and top-down processed silicon nanowire field-effect transistors[J]. Sensors (Basel), 2019, 19(20): 4502.
31
Chang YF, Wang WH, Hong YW, et al. Simple strategy for rapid and sensitive detection of avian influenza A H7N9 virus based on intensity-modulated SPR biosensor and new generated antibody[J]. Anal Chem, 2018, 90(3): 1861-1869.
32
Shi L, Sun Q, He J, et al. Development of SPR biosensor for simultaneous detection of multiplex respiratory viruses[J]. Biomed Mater Eng, 2015, 26 Suppl 1: S2207-S2216.
33
Hideshima S, Hinou H, Ebihara D, et al. Attomolar detection of influenza A virus hemagglutinin human H1 and avian H5 using glycan-blotted field effect transistor biosensor[J]. Anal Chem, 2013, 85(12): 5641-5644.
34
MacLeod JA, Nemeth AC, Dicke WC, et al. Fast, sensitive point of care electrochemical molecular system for point mutation and select agent detection[J]. Lab Chip, 2016, 16(13): 2513-2520.
35
Hardick J, Metzgar D, Risen L, et al. Initial performance evaluation of a spotted array mobile analysis platform (MAP) for the detection of influenza A/B, RSV, and MERS coronavirus[J]. Diagn Microbiol Infect Dis, 2018, 91(3): 245-247.
36
Kim J, Jung S, Kim MY, et al. Thermo-responsive polymer capsules in real-time one-step rt-PCR for highly multiplex RNA analysis[J]. Adv Healthc Mater, 2020, 9(7): e1900790.
37
Kwon S H, Lee S, Jang J, et al. A point-of-care diagnostic system to influenza viruses using chip-based ultra-fast PCR[J]. J Med Virol, 2018, 90(6): 1019-1026.
38
Wang S, Ai Z, Zhang Z, et al. Simultaneous and automated detection of influenza A virus hemagglutinin H7 and H9 based on magnetism and size mediated microfluidic chip[J]. Sens Actuators B Chem, 2020, 308: 127675.
39
Tseng YT, Wang CH, Chang CP, et al. Integrated microfluidic system for rapid detection of influenza H1N1 virus using a sandwich-based aptamer assay[J]. Biosens Bioelectron, 2016, 82: 105-111.
40
Koo B, Jin CE, Lee TY, et al. An isothermal, label-free, and rapid one-step RNA amplification/detection assay for diagnosis of respiratory viral infections[J]. Biosens Bioelectron, 2017, 90: 187-194.
41
Minagawa Y, Ueno H, Tabata KV, et al. Mobile imaging platform for digital influenza virus counting[J]. Lab Chip, 2019, 19(16): 2678-2687.
42
侯玥, 魏磊, 吴军, 等. 核酸适配子在生物医学领域中的应用[J]. 中国实验诊断学, 2010, 14(6): 965-968.
43
You JHS, Tam LP, Lee NLS. Cost-effectiveness of molecular point-of-care testing for influenza viruses in elderly patients at ambulatory care setting[J]. PLoS One, 2017, 12(7): e0182091.
44
Brendish NJ, Malachira AK, Armstrong L, et al. Routine molecular point-of-care testing for respiratory viruses in adults presenting to hospital with acute respiratory illness (ResPOC): a pragmatic, open-label, randomised controlled trial[J]. Lancet Respir Med, 2017, 5(5): 401-411.
45
Mina MJ, Parker R, Larremore DB. Rethinking COVID-19 test sensitivity-a strategy for containment[J]. N Engl J Med, 2020, 383(22): e120.
46
Chan RWY, Chan KC, Chan KYY, et al. SARS-CoV-2 detection by nasal strips: a superior tool for surveillance of paediatric population[J]. J Infect, 2020, 82(4): 84-123.
47
徐建新, 顾敏晔, 龚倩, 等. 浅谈国内外POCT智能技术的发展[J]. 中华检验医学杂志, 2017, 40(12): 983-984.
[1] 刘丽, 贾小慧, 刘艳, 沈晓佳, 周谦, 张海洋, 向丽佳, 温晓滨, 周元琳, 许婉婷, 杨磊, 李磊, 王林, 唐义蓉. 2017—2022年成都市儿童流行性感冒流行特征及儿童早期预警评分对病情严重程度的预测[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 235-241.
[2] 孟一星, 邓莉. 儿童副流感病毒感染研究进展[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 295-299.
[3] 李雪峰, 陈宁, 徐朝静, 姚蕊, 阮承迈. 四价流感病毒亚单位疫苗的制备和检定[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(06): 524-527.
[4] 许正锯, 胡厚泉, 谢丹丹, 张小曼, 刘理冠, 郑联坵, 颜燕燕, 黄志杰. 流行性感冒患者血清高尔基体蛋白73水平变化[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(03): 190-195.
[5] 侯志飞, 蒋栋, 赵学森, 曾辉. 诱导表达人IFITM3的293细胞株的建立及其对H1N1型流感病毒侵染作用[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(02): 198-203.
[6] 葛新顺, 于沛涛, 赵成松, 张英, 姚瑶, 蒋荣猛. 帕拉米韦治疗儿童甲型流感病毒感染的临床疗效[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(01): 71-75.
[7] 刘亚楠, 李珺, 华文浩, 宋淑静, 马小亮, 董建平, 宋蕊. 两种病毒核酸提取方法在流行感冒诊断中的比较[J]. 中华实验和临床感染病杂志(电子版), 2017, 11(05): 474-478.
[8] 肖慧, 徐维国, 范小兵, 李厚衡. 血清IL-34、SP-D、CXCL17在甲型流感病毒性肺炎患者中表达及临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 349-351.
[9] 史亮, 尹申慧, 任浩, 高荣, 马壮, 孙文武, 曹建平. 靶向核壳蛋白基因的siRNA对流感病毒的预防和治疗作用[J]. 中华肺部疾病杂志(电子版), 2020, 13(04): 461-465.
[10] 张晓伟, 蒋荣猛, 李玉玲. 帕拉米韦与奥司他韦对流感病毒肺炎患者的疗效及安全性分析[J]. 中华肺部疾病杂志(电子版), 2019, 12(05): 606-608.
[11] 葛新顺, 于沛涛, 赵成松, 张英, 姚瑶. 帕拉米韦治疗儿童甲流的疗效及安全性[J]. 中华临床医师杂志(电子版), 2017, 11(11): 1869-1872.
[12] 许新强, 李雪松, 何伟业, 唐琼华. 2019年广州白云区医院监测点关于甲型流感和乙型流感流行情况分析[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 230-234.
[13] 黄亨建, 曾玉萍. POCT的风险管理[J]. 中华临床实验室管理电子杂志, 2019, 07(02): 100-102.
[14] 赵建荣, 蔡倩, 李海燕, 彭干成, 李紫芹. 重症及危重症甲型H1N1流感病毒性肺炎患者临床诊断学特征分析[J]. 中华诊断学电子杂志, 2020, 08(04): 253-257.
[15] 谭云科, 王鹏飞, 蒋龙元. 广州地区5 613例流感样病例流行病学特征分析[J]. 中华卫生应急电子杂志, 2020, 06(01): 28-31.
阅读次数
全文


摘要