切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2020, Vol. 08 ›› Issue (04) : 228 -232. doi: 10.3877/cma.j.issn.2095-5820.2020.04.009

所属专题: 文献

实验研究

上转换荧光纳米颗粒NaYF4: Yb, Er的二氧化硅包覆及活性官能团修饰
许新强1, 李雪松1, 冀天星2, 雷萌3, 周强2,()   
  1. 1. 510405 广州,广州中医药大学第一附属医院 检验科
    2. 510260 广州,广州医科大学附属第二医院 检验科
    3. 336000 广东宜春,宜春市人民医院 检验科
  • 收稿日期:2020-08-08 出版日期:2020-11-28
  • 通信作者: 周强

Reactive functional groups decorate fluoride upconversion nanoparticles NaYF4: Yb, Er with silica coating

Xinqiang Xu1, Xuesong Li1, Tianxing Ji2, Meng Lei3, Qiang Zhou2,()   

  1. 1. Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, GuangZhou 510405, China
    2. Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, GuangZhou 510260, China
    3. Clinical Laboratory, Yichun People’s Hospital, Yichun Guangdong 336000, China
  • Received:2020-08-08 Published:2020-11-28
  • Corresponding author: Qiang Zhou
  • About author:
    Corresponding author: Zhou Qiang, Email:
引用本文:

许新强, 李雪松, 冀天星, 雷萌, 周强. 上转换荧光纳米颗粒NaYF4: Yb, Er的二氧化硅包覆及活性官能团修饰[J]. 中华临床实验室管理电子杂志, 2020, 08(04): 228-232.

Xinqiang Xu, Xuesong Li, Tianxing Ji, Meng Lei, Qiang Zhou. Reactive functional groups decorate fluoride upconversion nanoparticles NaYF4: Yb, Er with silica coating[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2020, 08(04): 228-232.

目的

对上转换纳米颗粒进行表面修饰,以利于生物应用。

方法

利用热分解法合成NaYF4: Yb, Er粒子,然后采用微乳液法在粒子表面包覆一薄层SiO2,并在其表面修饰环氧基团,采用透射电子显微镜、荧光光谱仪和傅里叶红外光谱分析仪分别对颗粒形貌、发光特性和表面性能进行表征。

结果

采用热分解法合成了大小均一,六方相的NaYF4: Yb, Er颗粒,二氧化硅包覆纳米粒子后仍具有较强的发光特性,并进一步成功修饰上了环氧基团。

结论

上转换纳米粒子经过表面修饰后具有较强的发光特性和稳定性,可作为生物荧光标记物应用于生物医学领域。

Objective

To modify the surface of nanoparticles for biological application.

Methods

NaYF4: Yb, Er nanoparticles were synthesized by thermal decomposition method, then a thin layer of SiO2 was coated on the surface of above nanoparticles by microemulsion method and epoxy group was also modified on the surface. In addition, the nanoparticles morphology, luminescence properties and surface properties were characterized by transmission electron microscopy (TEM), fluorescence spectroscopy and fourier infrared spectrum analyzer(FT-IR),respectively.

Results

Uniform-size and hexagonal-phase NaYF4: Yb, Er were synthesized by thermal decomposition method. Silica-coated NaYF4: Yb, Er nanoparticles still had strong luminescence properties, and nanoparticles could be further modified with epoxide group.

Conclusion

The fluoride upconversion nanoparticle with strong luminescence properties and stability after surface modification could be used as a new biological fluorescent marker in the biomedical field.

图1 β-NaYF4: 30%Yb, 2%Er颗粒的电镜图
图2 β-NaYF4: 30% Yb,2% Er的XRD和六角相的标准卡尺资料(JCPDS file no. 16-0034)
图3 颗粒包覆SiO2 的电镜图
图4 颗粒包覆SiO2前后的荧光光谱图:a.颗粒包覆SiO2之前的荧光光谱图 b.颗粒包覆SiO2之后的荧光光谱图
图5 傅里叶红外光谱分析图:a. NaYF4: 30% Yb,2% Er b. NaYF4: 30% Yb,2% Er表面包覆SiO2 c. NaYF4: 30% Yb,2% Er包覆SiO2后,并在其表面修饰环氧基
1
Lee SX, Lim HN, Ibrahim I, et al. Horseradish peroxidase-labeled silver/reduced graphene oxide thin film-modified screen-printed electrode for detection of carcinoembryonic antigen [J]. Biosens Bioelectron, 2017, 89: 673-680.
2
Gong C, Gong Y, Khaing Oo MK, et al. Sensitive sulfide ion detection by optofluidic catalytic laser using horseradish peroxidase (HRP) enzyme [J]. Biosens Bioelectron, 2017, 96: 351.
3
Arola HO, Tullila A, Nathanail AV, et al. A simple and specific noncompetitive ELISA method for HT-2 toxin detection [J]. Toxins, 2017, 9(4): 145.
4
Tang Y, Lai W, Zhang J, et al. Competitive photometric and visual ELISA for aflatoxin B 1 based on the inhibition of the oxidation of ABTS [J]. Microchimica Acta, 2017, 184(7): 2387-2394.
5
Gao Y, Pallister J, Lapierre F, et al. A rapid assay for Hendra virus IgG antibody detection and its titre estimation using magnetic nanoparticles and phycoerythrin [J]. J Virol Methods, 2015, 222: 170-177.
6
Yamamoto S, Ohta N, Matsumoto A, et al. Haloperidol suppresses NF-kappa B to inhibit lipopolysaccharide-induced pro-inflammatory response in RAW 264 cells [J]. Med Sci Monit, 2016, 22: 367-372.
7
Wang S, Chen C, Su K, et al. Angiotensin II induces reorganization of the actin cytoskeleton and myosin light-chain phosphorylation in podocytes through rho/ROCK-signaling pathway [J]. Renal Fail, 2016, 38(2): 268-275.
8
Rashidi L, Ganji F, Vasheghani-Farahani E. Fluorescein isothiocyanate-dyed mesoporous silica nanoparticles for tracking antioxidant delivery [J]. Iet Nanobiotechnol, 2017, 11(4): 454-462.
9
Sano K, Ohashi M, Kanazaki K, et al. Indocyanine green-labeled polysarcosine for in vivo photoacoustic tumor imaging [J]. Bioconj Chem, 2017, 28(4): 1024-1030.
10
Ma R, Wu Q, Si T, et al. Oxygen and indocyanine green loaded microparticles for dual-mode imaging and sonodynamic treatment of cancer cells [J]. Ultrasonics Sonochemistry, 2017, 39: 197-207.
11
Sugie T, Ikeda T, Kawaguchi A, et al. Sentinel lymph node biopsy using indocyanine green fluorescence in early-stage breast cancer: a meta-analysis [J]. Int J Clin Oncol, 2017, 22(1): 1-7.
12
Liu Q, Chen M, Sun Y, et al. Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence /fluorescence /positron emission tomography imaging[J]. Biomaterials. 2011, 32(32): 8243-8253.
13
Francolon N, Boyer D, Leccia F, et al. Preparation of core/shell NaYF4:Yb,Tm@dendrons nanoparticles with enhanced upconversion luminescence for in vivo imaging [J]. Nanomedicine, 2016, 12(7): 2107-2113.
14
Zhou J, Chen S, Sun C, et al. A "submunition" dual-drug system based on smart hollow NaYF4/apoferritin nanocage for upconversion imaging [J]. Rsc Advances, 2016, 6(40): 33443-33454.
15
Chen G, Ohulchanskyy TY, Kumar R, et al. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence [J]. Acs Nano, 2010, 4(6): 3163-3168.
16
Wang M, Liu JL, Zhang YX, et al. Two-phase solvothermal synthesis of rare-earth doped NaYF4 upconversion fluorescent nanocrystals [J]. Materials Letters, 2009, 63(2): 325-327.
17
Goftman VV, Aubert T, Ginste DV, et al. Synthesis, modification, bioconjugation of silica coated fluorescent quantum dots and their application for mycotoxin detection [J]. Biosens Bioelectron, 2016, 79: 476-481.
18
单爽, 吴昊, 谭明乾, 等. 稀土上转换荧光纳米材料的制备与生物应用 [J].生物化学与生物物理进展, 2013, 40(10): 925-934.
19
Chen Z, Chen H, Hu H, et al. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels [J]. JACS, 2008, 130(10): 3023-3029.
20
Jin J, Gu YJ, Man CW, et al. Polymer-coated NaYF4:Yb3+/Er3+ upconversion nanoparticles for charge-dependent cellular imaging [J]. Acs Nano, 2011, 5(10): 7838-7847.
21
Yang W, Trau D, Renneberg R, et al. Layer-by-layer construction of novel biofunctional fluorescent microparticles for immunoassay applications [J]. J Colloid Interface Sci, 2001, 234(2): 356-362.
22
Liu F, Zhao Q, You H, et al. Synthesis of stable carboxy-terminated NaYF4: Yb3+, Er3+@SiO2 nanoparticles with ultrathin shell for biolabeling applications [J]. Nanoscale, 2013, 5(3): 1047-1053.
23
Johnson NJJ, Sangeetha NM, Boyer JC, et al. Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4:Yb3+/Er3+ nanoparticles [J]. Nanoscale, 2010, 2(5): 771-777.
24
And GSY, Chow GM. Water-Soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence [J]. Chem Materials. 2007, 19(3): 341-343.
25
Tianxing J, Xinqiang X, Xindong W. Monodisperse water-stable SiO2- coated fluoride upconversion nanoparticles with tunable shell thickness [J]. Int Nanomaterials, 2017,1: 15-18.
26
Homann C, Krukewitt L, Frenzel F, et al. NaYF4:Yb,Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield [J]. Angew Chem Int Ed Engl, 2018, 57(28): 8765-8769.
27
Chen Z, Wu X, Hu S, et al. Upconversion NaLuF4 fluorescent nanoprobes for jellyfish cell imaging and irritation assessment of organic dyes [J]. J Materials Chem, 2015, 3(23): 6067-6076.
28
Tianxing J, Xinqiang X, Xindong W, et al. Point of care upconversion nanoparticles-based lateral flow assay quantifying myoglobin in clinical human blood samples [J]. Sens Actuat Chemi, 2019, 282: 309-316.
No related articles found!
阅读次数
全文


摘要