切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2022, Vol. 10 ›› Issue (04) : 204 -209. doi: 10.3877/cma.j.issn.2095-5820.2022.04.003

实验研究

血清经56 ℃加热30 min的灭活方式对生化项目检测结果的影响
李欢1, 尹笑笑2, 纵如原2, 杨伏猛2, 刘倩2,()   
  1. 1. 222006 江苏连云港,连云港市第二人民医院检验科;641199 四川内江,内江市中医院检验科
    2. 222006 江苏连云港,连云港市第二人民医院检验科
  • 收稿日期:2022-05-27 出版日期:2022-11-28
  • 通信作者: 刘倩
  • 基金资助:
    江苏省卫健委医学科研面上项目(M2020079); 蚌埠医学院自然科学基金重点项目(2020byzd342)

Effect of inactivation of serum heated at 56 ℃ for 30 min on biochemical test results

Huan Li1, Xiaoxiao Yin2, Ruyuan Zong2, Fumeng Yang2, Qian Liu2,()   

  1. 1. Department of Laboratory, The Second People's Hospital of Lianyungang, Lianyungang Jiangsu 222006, China; Department of Laboratory, Neijiang Traditional Chinese Medicine Hospital, Neijiang Sichuan 641199, China
    2. Department of Laboratory, The Second People's Hospital of Lianyungang, Lianyungang Jiangsu 222006, China
  • Received:2022-05-27 Published:2022-11-28
  • Corresponding author: Qian Liu
引用本文:

李欢, 尹笑笑, 纵如原, 杨伏猛, 刘倩. 血清经56 ℃加热30 min的灭活方式对生化项目检测结果的影响[J]. 中华临床实验室管理电子杂志, 2022, 10(04): 204-209.

Huan Li, Xiaoxiao Yin, Ruyuan Zong, Fumeng Yang, Qian Liu. Effect of inactivation of serum heated at 56 ℃ for 30 min on biochemical test results[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2022, 10(04): 204-209.

目的

基于新型冠状病毒(SARS-CoV-2)的高传染性和致病性,探讨血清经56 ℃加热30 min对常规生化指标检测结果是否有影响,旨在为实验室通过加热灭活标本开展常规生化指标的检测提供重要参考。

方法

随机收集2021年1月至连云港市第二人民医院体检中心的体检健康人群50例作为研究对象,应用贝克曼AU5800全自动生化分析仪分别测定灭活前与灭活后的血清常规生化项目,并比较56 ℃加热30 min的灭活方式对常规生化项目的测定有无影响。

结果

灭活前与灭活后的血清总蛋白(TP)、尿素(UREA)、肌酐(Cr)、尿酸(UA)、钾(K)、钙(Ca)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)的检测结果差异无统计学意义(P>0.05)。且Bland-Altman一致性分析显示:血清总胆红素(TBIL)、钠(Na)、氯(Cl)、磷(P)、二氧化碳结合力(CO2-CP)、葡萄糖(GLU)、糖化血清蛋白(GSP)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)、载脂蛋白A(Apo-A)及载脂蛋白B(Apo-B)在标本灭活前后的差异具有临床可接受的一致性;而血清直接胆红素(DBIL)、白蛋白(ALB)、β2微球蛋白(β2-MG)及同型半胱氨酸(HCY)项目则无临床可接受的一致性。

结论

实验室基于56 ℃加热30 min处理血清标本时,需对有影响的生化项目采取必要的校正措施,以期为临床提供精准的检测结果。

Objective

According to the high infectivity and pathogenicity of SARS-CoV-2, this study investigated whether the serum heated at 56 ℃ for 30 minutes would affect the results of biochemical indicators, so as to provide an important reference for the laboratory to carry out the detection of routine biochemical indicators by heating inactivated specimens.

Methods

A total of 50 healthy people with physical examination in our hospital from January 2021 were enrolled in this study. The Beckman AU5800 automatic biochemical analyzer was used to determine the serum routine biochemical indicators before and after inactivation, and compared whether the inactivation method of heating at 56 ℃ for 30 min had any effect on the measured results.

Results

There were no significant differences in the results of serum total protein (TP), urea (UREA), creatinine (Cr), uric acid (UA), potassium (K), calcium (Ca), triglyceride (TG) and low density lipoprotein cholesterol (LDL-C) before and after inactivation (P>0.05). The Bland Altman consistency analysis showed that the differences of serum total bilirubin (TBIL), sodium (Na), chlorine (Cl), phosphorus (P), carbon dioxide binding capacity (CO2-CP), glucose (GLU), glycosylated serum protein (GSP), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), apolipoprotein a (Apo-A) and apolipoprotein B (Apo-B) before and after inactivation were clinically acceptable. However, serum direct bilirubin (DBIL), albumin (ALB), β2-microglobulin (β2-MG), homocysteine (HCY) did not have clinically acceptable consistency.

Conclusions

When laboratory process the specimen using the method of heating at 56°C for 30 minutes, it is necessary to take corrective measures for the biochemical indicators with significant influence, in order to provide accurate results.

表1 常规生化指标的TEa及其来源
表2 常规生化指标热灭活前后的结果比较
项目 灭活前 灭活后 t/Z P
TP(g/L,
x¯
±s
76.15±3.85 76.15±3.79 0.041 0.9678
UREA(mmol/L,
x¯
±s
4.66±0.97 4.70±0.98 1.999 0.0512
Cr(µmol/L,
x¯
±s
63.94±11.35 63.88±11.21 0.219 0.8280
UA(µmol/L,
x¯
±s
309.40±72.33 309.70±72.29 0.853 0.3979
K(mmol/L,
x¯
±s
4.16±0.31 4.17±0.34 0.641 0.5243
Ca(mmol/L,
x¯
±s
2.28±0.07 2.28±0.07 0.805 0.4248
TG[mmol/L,MQ1,Q3)] 1.06(0.82,1.43) 1.04(0.82,1.41) -0.564 0.5730
LDL-C(mmol/L,
x¯
±s
2.71±0.53 2.70±0.53 1.948 0.0572
TBIL(µmol/L,
x¯
±s
15.56±6.54 15.72±6.63 5.936 <0.0001
DBIL(µmol/L,
x¯
±s
2.49±0.88 2.39±0.83 3.974 0.0002
ALB(g/L,
x¯
±s
47.10±2.54 47.93±2.60 10.290 <0.0001
β2-MG[mg/L,MQ1,Q3)] 1.50(1.40,1.70) 1.60(1.40,1.70) -3.059 0.0022
Na(mmol/L,
x¯
±s
140.50±1.39 140.30±1.46 2.984 0.0044
Cl(mmol/L,
x¯
±s
102.30±1.85 102.00±1.80 5.719 <0.0001
P(mmol/L,
x¯
±s
1.17±0.18 1.16±0.17 2.236 0.0226
CO2-CP(mmol/L,
x¯
±s
22.23±2.33 21.07±2.17 14.900 <0.0001
GLU[mmol/L,MQ1,Q3)] 5.49(5.20,5.71) 5.53(5.17,5.80) -2.596 0.0094
TC(mmol/L,
x¯
±s
4.36±0.68 4.41±0.68 7.562 <0.0001
HDL-C(mmol/L,
x¯
±s
1.23±0.23 1.27±0.23 9.311 <0.0001
Apo-A(g/L,
x¯
±s
1.63±0.22 1.66±0.22 6.657 <0.0001
Apo-B(g/L,
x¯
±s
0.87±0.22 0.88±0.22 9.220 <0.0001
HCY[µmol/L,MQ1,Q3)] 7.30(5.50,9.70) 7.45(5.68,9.90) -4.141 <0.0001
GSP(mmol/L,
x¯
±s
2.25±0.23 2.18±0.23 5.377 <0.0001
图1 热灭活前后Bland-Altman一致性分析注:1A:TBIL;1B:DBIL;1C:ALB;1D:β2-MG;1E:Na;1F:Cl;1G:P;1H:CO2-CP;1I:GLU;1J:TC;1K:HDL-C;1L:Apo-A;1M:Apo-B;1N:HCY;1O:GSP
1
Krishnan A, Hamilton JP, Alqahtani SA, et al. COVID-19: An overview and a clinical update[J]. World J Clin Cases, 2021, 9(1): 8-23.
2
Parthasarathy P, Vivekanandan S. An extensive study on the COVID-19 pandemic, an emerging global crisis: risks, transmission, impacts and mitigation[J]. J Infect Public Health, 2021, 14(2): 249-259.
3
Cevik M, Bamford CGG, Ho A. COVID-19 pandemic-a focused review for clinicians[J]. Clin Microbiol Infect, 2020, 26(7): 842-847.
4
Jehi L, Ji X, Milinovich A, et al. Individualizing risk prediction for positive Coronavirus disease 2019 Testing: results from 11, 672 patients[J]. Chest, 2020, 158(4): 1364-1375.
5
Alsalem MA, Alamoodi AH, Albahri OS, et al. Multi-criteria decision-making for Coronavirus disease 2019 applications: a theoretical analysis review[J]. Artif Intell Rev, 2022, 55(6): 4979-5062.
6
Baysson H, Pennachio F, Wisniak A, et al. Specchio-COVID19 cohort study: a longitudinal follow-up of SARS-CoV-2 serosurvey participants in the canton of Geneva, Switzerland[J]. BMJ Open, 2022, 12(1): e055515.
7
Cortés Zamora EB, Mas Romero M, Tabernero Sahuquillo MT, et al. Psychological and functional impact of COVID-19 in long-term care facilities: The COVID-A Study[J]. Am J Geriatr Psychiatry, 2022, 30(4): 431-443.
8
Abd EW, Eassa SM, Metwally M, et al. SARS-CoV-2 transmission channels: a review of the literature[J]. MEDICC Rev, 2020, 22(4): 51-69.
9
Szkaradkiewicz-Karpińska AK, Szkaradkiewicz A. Towards a more effective strategy for COVID-19 prevention (review)[J]. Exp Ther Med, 2021, 21(1): 33.
10
中华人民共和国国家卫生健康委员会. 新型冠状病毒肺炎诊疗方案(试行第八版)[EB/OL]. (2020-08-19)[2022-09-21].

URL    
11
Wheeler DR, Chibbaro S, Karoutis I, et al. A study investigating the knowledge and responses of Italian medical students to the COVID-19 pandemic[J]. Pathog Glob Health, 2021, 115(4): 250-257.
12
Zhao N, Zhou ZL, Wu L, et al. An update on the status of COVID-19: a comprehensive review[J]. Eur Rev Med Pharmacol Sci, 2020, 24(8): 4597-4606.
13
Zou JB, Zhi SS, Chen MY, et al. Heat inactivation decreases the qualitative real-time RT-PCR detection rates of clinical samples with high cycle threshold values in COVID-19[J]. Diagn Microbiol Infect Dis, 2020, 98(1): 115109.
14
Kim YI, Casel MAB, Kim SM, et al. Development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) thermal inactivation method with preservation of diagnostic sensitivity[J]. J Microbiol, 2020, 58(10): 886-891.
15
中华人民共和国卫生部. WS/T 403-2012 临床生物化学检验常规项目分析质量指标[S]. 北京: 中华人民共和国卫生部, 2012.
16
Liu Q, Dai Y, Feng M, et al. Associations between serum amyloid A, interleukin-6, and COVID-19: A cross-sectional study[J]. J Clin Lab Anal, 2020, 34(10): e23527.
17
Yu J, Nie L, Wu D, et al. Prognostic value of a clinical biochemistry-based nomogram for Coronavirus disease 2019[J]. Front Med (Lausanne), 2021, 7: 597791.
18
Kantri A, Ziati J, Khalis M, et al. Hematological and biochemical abnormalities associated with severe forms of COVID-19: A retrospective single-center study from Morocco[J]. PLoS One, 2021, 16(2): e0246295.
19
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study[J]. Lancet Respir Med, 2020, 8(5): 475-481.
20
Pitman JL, Morris AJ, Grice S, et al. Validation of a molecular assay to detect SARS-CoV-2 in saliva[J]. N Z Med J, 2021, 134(1547): 34-47.
21
Asghari A, Adeli SH, Parham M, et al. Comparing the sensitivity and specificity of lung CT-scan with RT-PCR for diagnosis of COVID-19[J]. Curr Med Imaging, 2022.
22
Adams O, Andrée M, Hermsen D, et al. Comparison of commercial SARS-CoV-2 surrogate neutralization assays with a full virus endpoint dilution neutralization test in two different cohorts[J]. J Virol Methods, 2022, 307: 114569.
23
中华人民共和国国家卫生健康委员会. 新型冠状病毒实验室生物安全指南(第二版) [EB/OL]. (2020-01-23)[2022-09-21].

URL    
24
刘兆宇, 李学武, 周月, 等. 加热灭活病毒法对生化及炎症指标检测结果的影响[J]. 中华医院感染学杂志, 2020, 30(10): 1485-1489.
25
刘长德, 焦明远, 高超, 等. 血清56 ℃加热30 min灭活对生化指标检测结果的影响研究[J]. 国际检验医学杂志, 2020, 41(11): 1366-1370.
26
Hu X, Zhang R, An T, et al. Impact of heat-inactivation on the detection of SARS-CoV-2 IgM and IgG antibody by ELISA[J]. Clin Chim Acta, 2020, 509: 288-292.
27
孙晶晶, 刘纯, 杨增伟, 等. 血清加热灭活法对新型冠状病毒肺炎患者的降钙素原和白细胞介素-6检测结果的影响研究[J]. 兰州大学学报(医学版), 2020, 46(2): 10-13.
28
李爱敏, 于思洋, 董晓宇, 等. 加热灭活及4 ℃储存对血浆新型冠状病毒总抗体稳定性影响的研究[J]. 国际免疫学杂志, 2021, 44(5): 493-499.
29
冯星星, 陈俊伶, 王艳春, 等. 加热灭活对下呼吸道病毒抗原检测结果影响的初步研究[J]. 国际检验医学杂志, 2021, 42(19): 2356-2359.
30
叶慧, 叶恒平, 马肖, 等. 加热灭活对荧光定量逆转录PCR检测新型冠状病毒RNA影响分析[J]. 病毒学报, 2020, 36(6): 1004-1008.
[1] 周灿, 史博慧, 杨谨, 李军涛, 许锐, 陈元元, 魏洪亮, 刘震, 邓智平, 樊东, 刁岩, 李雄雄, 白俊文, 任予. 乳腺癌患者新型冠状病毒感染后的临床症状:基于患者自报告结局的多中心横断面调查研究[J]. 中华乳腺病杂志(电子版), 2023, 17(03): 157-162.
[2] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[3] 李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 294-298.
[4] 吴令杰, 陈瑞烈, 陈桂佳, 肖湘明, 林钟滨. 两例获得性免疫缺陷综合征合并新型冠状病毒感染者抗病毒治疗并文献复习[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 282-286.
[5] 朱名超, 朱娅, 郭飞波, 黄银娥. 新型冠状病毒感染诱导冷凝集现象对血常规参数的影响[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 244-251.
[6] 李振华, 解宝江, 易为, 李丽, 卫雅娴, 周明书, 伊诺. 82例孕产妇对新型冠状病毒肺炎疫情防控认知的心理干预及常态化疫情防控应对要点[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 173-179.
[7] 戚若晨, 马帅军, 韩士超, 王国辉, 刘克普, 张小燕, 杨晓剑, 秦卫军. 肾移植术后新型冠状病毒感染单中心诊疗经验[J]. 中华移植杂志(电子版), 2023, 17(04): 232-239.
[8] 刘路浩, 苏泳鑫, 曾丽娟, 张鹏, 陈荣鑫, 徐璐, 李光辉, 方佳丽, 马俊杰, 陈正. 新型冠状病毒感染疫情期间肾移植受者免疫抑制剂服药依从性研究[J]. 中华移植杂志(电子版), 2023, 17(03): 140-145.
[9] 国家传染病医学中心, 中华医学会器官移植学分会, 中国康复医学会器官移植康复专业委员会, 中国器官移植发展基金会器官移植受者健康管理专项基金. 实体器官移植受者新型冠状病毒感染诊疗专家共识(2023年版)[J]. 中华移植杂志(电子版), 2023, 17(02): 65-81.
[10] 邵乐宁, 何腾飞, 钟丰云, 吴浩荣. 嵌顿疝合并新型冠状病毒感染高龄患者的外科诊治体会[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(03): 280-284.
[11] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[12] 李金璞, 饶向荣. 抗病毒药物和急性肾损伤[J]. 中华肾病研究电子杂志, 2023, 12(05): 287-290.
[13] 徐静媛, 谢波, 邱海波, 杨毅. 《重症医学》课程思政建设的探索与实践[J]. 中华重症医学电子杂志, 2023, 09(03): 265-268.
[14] 李雪珠, 谢剑锋, 李晓青, 夏泽燕, 鲁玲, 顾晓霞, 马绍磊, 黄英姿. 循环式筛查与五色区域分类模式在方舱医院管理中的应用[J]. 中华重症医学电子杂志, 2023, 09(03): 316-320.
[15] 田丹阳, 刘小璇, 叶珊, 马新然, 樊东升, 傅瑜. 新型冠状病毒感染疫情对神经内科住院医师规范化培训的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 499-504.
阅读次数
全文


摘要