切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2023, Vol. 11 ›› Issue (04) : 221 -229. doi: 10.3877/cma.j.issn.2095-5820.2023.04.005

调查研究

基于网络药理学和分子对接探究桑菊感冒颗粒抗甲型H1N1流感的活性成分及作用机制
黄楠, 肖天池, 曾成粤, 莫乔惠, 张丽嬴, 徐淼源, 邓小燕, 梁晓丽()   
  1. 510182 广东广州,广州医科大学金域检验学院
  • 收稿日期:2023-05-28 出版日期:2023-11-28
  • 通信作者: 梁晓丽
  • 基金资助:
    2022年广东省级大学生创新创业训练计划项目(S202210570073); 2023年广州市基础与应用基础研究项目(2023A04J1186); 2022年度广州医科大学金域检验学院学生创新能力提升计划项目(02-408-2304-09026XM)

The component and mechanism of Sangjuganmao Granules against influenza A (H1N1) based on network pharmacology and molecular docking

Nan Huang, Tianchi Xiao, Chengyue Zeng, Qiaohui Mo, Liying Zhang, Miaoyuan Xu, Xiaoyan Deng, Xiaoli Liang()   

  1. KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou Guangdong 510182, China
  • Received:2023-05-28 Published:2023-11-28
  • Corresponding author: Xiaoli Liang
引用本文:

黄楠, 肖天池, 曾成粤, 莫乔惠, 张丽嬴, 徐淼源, 邓小燕, 梁晓丽. 基于网络药理学和分子对接探究桑菊感冒颗粒抗甲型H1N1流感的活性成分及作用机制[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 221-229.

Nan Huang, Tianchi Xiao, Chengyue Zeng, Qiaohui Mo, Liying Zhang, Miaoyuan Xu, Xiaoyan Deng, Xiaoli Liang. The component and mechanism of Sangjuganmao Granules against influenza A (H1N1) based on network pharmacology and molecular docking[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2023, 11(04): 221-229.

目的

基于网络药理学和分子对接技术探寻桑菊感冒颗粒抗甲型H1N1流感的核心成分和作用机制。

方法

利用TCMSP、BATMAN-TCM和SwissTargetPrediction数据库并查阅文献收集和预测桑菊感冒颗粒的活性成分及作用靶点;通过GeneCards、OMIM、DisGeNET等数据库收集甲型H1N1流感的疾病靶点;绘制Venny图获得二者交集靶点。将交集靶点通过DAVID数据库进行GO功能以及KEGG通路富集分析;将交集靶点导入STRING数据库构建蛋白互作网络,利用Cytoscape 3.9.1软件MCC算法确定关键核心靶点并反向筛选核心活性成分,绘制中药-成分-靶点-疾病网络关系图。最后利用分子对接软件验证核心活性成分和关键核心治疗靶点之间的相互作用。

结果

筛选得到桑菊感冒颗粒活性成分153个及潜在作用靶点336个,甲型H1N1流感疾病靶点765个,共有58个交集靶点。GO功能分析得到GO条目414个,生物过程主要涉及RNA聚合酶Ⅱ启动子转录的正向调节、基因表达的正调控以及细胞凋亡;细胞组分主要涉及胞外区、外泌体以及线粒体;分子功能主要涉及蛋白质结合、细胞因子活性。KEGG通路富集分析筛选到126条结果,主要涉及IL-17、TNF、C型凝集素受体信号通路。进一步筛选得到核心活性成分槲皮素、木犀草素、山奈酚等,关键核心靶点涉及IL-6、IL-1B、TNF、JUN、TP53、PTGS2、VEGFA、ALB、MMP9、IL-10等。分子对接结果表明桑菊感冒颗粒核心活性成分与抗甲型H1N1流感关键核心靶点之间具有良好的结合活性。

结论

桑菊感冒颗粒可能主要通过槲皮素、木犀草素、山奈酚等核心活性成分作用IL-6、IL-1B、TNF、JUN、TP53、PTGS2、VEGFA、ALB、MMP9、IL-10等关键核心靶点,通过参与IL-17、TNF、C型凝集素受体多种信号通路协同发挥抗甲型H1N1流感的作用。

Objective

To explore the active ingredients and mechanism of Sangjuganmao Granules against influenza A (H1N1) based on network pharmacology and molecular docking technology.

Methods

The active ingredients and related targets of Sangjuganmao Granules were collected by TCMSP, BATMAN-TCM, SwissTargetPrediction databases and literature review. The related targets of influenza A (H1N1) were collected from GeneCards, OMIM, DisGeNET and other databases. Venny diagram was drawn in order to obtain the intersection targets. Then the intersection targets were input into DAVID database for GO function and KEGG pathway enrichment analysis, and were imported into the STRING database to construct the protein intersection(PPI) network. The core targets and the main active ingredients were captured by the MCC algorithm of Cytoscape 3.9.1 software. This software was also used to draw the traditional Chinese medicine-component-target-disease network diagram. Finally, molecular docking software was used to verify the interaction between main active ingredients and core targets.

Results

A total of 153 active ingredients and 336 potential targets were obtained from Sangjuganmao Granules, and 765 targets of influenza A (H1N1) were identified, with a total of 58 intersection targets. GO functional analysis abtained 414 GO entries, the biological processes were mainly involved in the positive tegulation of RNA polymerase Ⅱ promoter transcription, positive regulation of gene expression and apoptosis. The cellular components were mainly involved extracellular regions, exosomes and mitochondria. The molecular functions were mainly involved in protein binding and cytokine activity. KEGG pathway enrichment analysis obtained 126 results, which mainly involved in IL-17, TNF and C-type lectin receptor signaling pathways. The core active ingredients such as quercetin, luteolin, and kaempferol were captured by further analysis, and the core targets were involved in IL-6, IL-1B, TNF, JUN, TP53, PTGS2, VEGFA, ALB, MMP9, IL-10, etc. Molecular docking results showed that the core active ingredients of Sangjuganmao Granules had good binding activity with the core targets of anti-influenza A (H1N1).

Conclusions

Sangjuganmao Granules mainly acts on core targets IL-6, IL1-B, TNF, JUN, TP53, PTGS2, VEGFA, ALB, MMP9 and IL-10 through quercetin, luteolin, kaferol and other active ingredients, and plays an important role in anti-influenza A (H1N1) by participating in multiple signaling pathways such as IL-17, TNF and C-type lectin receptor.

表1 桑菊感冒颗粒前10种活性成分
图1 桑菊感冒颗粒与甲型H1N1流感的交集靶点
图2 GO功能富集分析的气泡图
图3 KEGG通路富集分析的气泡图
图4 活性成分与疾病交集靶点的PPI网络 注:4A. 交集靶点所得PPI网络图;4B. 筛选所得核心靶点。
图5 桑菊感冒颗粒-成分-靶点-疾病网络图
表2 桑菊感冒颗粒核心活性成分和关键核心靶点蛋白对接结果
图6 桑菊感冒颗粒抗甲型H1N1流感部分核心活性成分和关键靶点的分子对接结果 注 :6A. 槲皮素和MMP9蛋白相互作用模式;6B. 木犀草素和PTGS2相互作用模式;6C. 木犀草素和VEGFA相互作用模式;6D. 山奈酚和PTGS2相互作用模式。
1
JESTER B, UYEKI T, JERNIGAN D. Readiness for responding to a severe pandemic 100 years after 1918[J]. American journal of epidemiology, 2018, 187(12): 2596-2602.
2
伊娜.中药抗流感病毒作用的进展探讨[J].黑龙江医药, 2021, 34(2): 306-308.
3
刘洋, 夏彬彬, 成华. 磷酸奥司他韦致33例不良反应病例分析[J]. 中国药物应用与监测, 2019, 16(6): 357-360.
4
刘凯雄, 瞿介明. 糖皮质激素在甲型H1N1流感中的应用探讨[J]. 中国呼吸与危重监护杂志, 2010, 9(3): 226-227.
5
杨小乐, 张传清, 张洪雷, 等. 愈感颗粒治疗外感咳嗽临床研究[J]. 中国中医急症, 2010, 19(1): 9-10, 154.
6
屠家启. 谈中成药的合理应用[J]. 基层中药杂志, 2001(5): 58.
7
刘志华, 孙晓波. 网络药理学: 中医药现代化的新机遇[J]. 药学学报, 2012, 47(6): 696-703.
8
任娟,张娜,王敏,等.基于网络药理学的砂仁镇痛作用机制研究[J]. 中国药学杂志, 2021, 56(9): 723-730.
9
高凤凤,裴艳玲,任越,等.基于网络药理学与分子对接技术研究黄精抗动脉粥样硬化的作用机制[J]. 药学学报, 2020, 55(11): 2642-2650.
10
周定定, 李辉虎, 汤兴涌,等. 甘草酸和甘草苷生物合成与调控的研究进展[J]. 生物技术通报, 2023, 39(5): 44-53.
11
AGRAWAL S, PATHAK E, MISHRA R, et al. Computational exploration of the dual role of the phytochemical fortunellin: Antiviral activities against SARS-CoV-2 and immunomodulatory abilities against the host[J]. Computers in biology and medicine, 2022, 149: 106049.
12
CHEN H T, CHUANG C W, CHENG J C, et al. Terpenoids with anti-influenza activity from the leaves of Euphorbia Leucocephala[J]. Natural product research, 2023, 37(6): 936-943.
13
杨子峰. 贯叶金丝桃抗包膜病毒作用的研究进展[J]. 广州中医药大学学报, 2003(1): 86-89.
14
CHIN C H, CHEN S H, WU H H, et al. CytoHubba: Identifying hub objects and sub-networks from complex interactome[J]. BMC Syst Biol, 2014, 8(Suppl 4): S11.
15
中华人民共和国卫生部药典委员会. WS3-B-0397-90 中华人民共和国卫生部药品标准: 中药成方制剂(第2册)[S]. 北京:中华人民共和国卫生部, 1990.
16
赵冰倩, 罗畅, 刘健新, 等. 连翘水提液体外对禽流感病毒增殖及炎症因子表达的抑制效应[J]. 畜牧兽医学报, 2020, 51(6): 1466-1474.
17
王辉, 吴莎, 孙毅凡, 等. 桑叶提取物的抗病毒活性检测[J]. 蚕业科学, 2011, 37(5): 952-956.
18
史晨希, 刘妮, 张奉学, 等. 野菊花水提物体内外抗甲1型流感病毒(H1N1)作用研究[J]. 中药材, 2010, 33(11): 1773-1776.
19
方炳虎, 邱灵才, 陈建新, 等. 甘草主要成分抗H9N2亚型流感病毒作用研究[J]. 广东农业科学, 2007(3): 66-69.
20
束雅春, 王海丹, 朱萱萱, 等. 薄荷-荆芥不同配伍组分体外抗流感病毒作用研究[J]. 中华中医药学刊, 2021, 39(10): 16-20, 260-261.
21
TSAN M F, WHITE J E, DEL VECCHIO P J, et al. IL-6 enhances TNF-alpha- and IL-1-induced increase of Mn superoxide dismutase mRNA and O2 tolerance[J]. The American journal of physiology, 1992, 263(1 Pt 1): L22-6.
22
BERTELLI A A, MANNARI C, SANTI S, et al. Immunomodulatory activity of shikimic acid and quercitin in comparison with oseltamivir (Tamiflu) in an“in vitro”model[J]. Journal of medical virology, 2008, 80(4): 741-745.
23
GANSUKH E, KAZIBWE Z, PANDURANGAN M, et al. Probing the impact of quercetin-7-O-glucoside on influenza virus replication influence[J]. Phytomedicine: International journal of phytotherapy and phytopharmacology, 2016, 23: 958-967.
24
SUN J, DODD H, MOSER E K, et al. CD4+ T cell help and innate-derived IL-27 induce Blimp-1-dependent IL-10 production by antiviral CTLs[J]. Nature immunology, 2011, 12(4): 327-334.
25
SWARDFAGER W, LANCTÔT K, ROTHENBURG L, et al. A meta-analysis of cytokines in Alzheimer's disease[J]. Biological psychiatry, 2010, 68(10): 930-941.
26
刘晓婷, 顾立刚, 邓东沅, 等. 黄芩苷和木犀草苷在体外对流感病毒H1N1感染A549细胞中NF-κB信号通路的调控作用[J]. 中华中医药杂志, 2016, 31(5): 1937-1941.
27
MEDEIROS N I, GOMES J A S, CORREA-OLIVEIRA R. Synergic and antagonistic relationship between MMP-2 and MMP-9 with fibrosis and inflammation in Chagas' cardiomyopathy[J]. Parasite immunology, 2017, 39(8).
28
WANG X, YU Y Y, LIEU S, et al. MMP9 regulates the cellular response to inflammation after skeletal injury[J]. Bone, 2013, 52(1): 111-119.
29
李春波, 苏韫, 龚红霞, 等. IL-17通过NF-κB信号通路参与胃癌发生发展的免疫调控[J].基础医学与临床, 2020, 40(7): 923-928.
30
HA S Y, YOUN H, SONG C S, et al. Antiviral effect of flavonol glycosides isolated from the leaf of Zanthoxylum piperitum on influenza virus[J]. The journal of microbiology, 2014, 52(4): 340-344.
31
刘福和, 陈少军, 倪文娟. 川芎中抗血栓活性成分的计算机虚拟筛选研究[J]. 中国药房, 2017, 28(16): 2182-2186.
32
KONG X, HUO G, LIU S, et al. Luteolin suppresses inflammation through inhibiting cAMP-phosphodiesterases activity and expression of adhesion molecules in microvascular endothelial cells[J]. Inflammopharmacology, 2019, 27(4): 773-780.
[1] 张艳兰, 徐琳, 王彩英, 庞琳. 淋巴细胞亚群在儿童重症甲型流感诊断中的价值[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(06): 368-373.
[2] 徐晓雪, 王蓓蓓, 宋蕊, 宋洋子, 赵雪, 姜钰, 曹钰, 曾辉. 甲型流感病毒感染者CD160+CD8+T淋巴细胞亚群分析[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(03): 206-211.
[3] 赵扬, 王彩英, 万钢, 张新鑫, 何树新, 郝一炜, 庞琳. 儿童甲型流感合并川崎病的临床特征[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(03): 258-263.
[4] 肖慧, 徐维国, 范小兵, 李厚衡. 血清IL-34、SP-D、CXCL17在甲型流感病毒性肺炎患者中表达及临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 349-351.
[5] 于芳宁, 刘武, 高艺玮, 张宁, 李心怡, 王薇, 沈潜. 钩藤-牛膝药对治疗肾血管性高血压的潜在分子机制[J]. 中华肾病研究电子杂志, 2023, 12(02): 74-80.
[6] 金美玲, 李典耕, 张伟光, 尹智炜, 杨洪娟. 基于网络药理学和分子对接研究益肾健脾利水方治疗肾小球肾炎的作用机制[J]. 中华肾病研究电子杂志, 2021, 10(04): 189-197.
[7] 胡天祥, 黄贵锐, 毛炜, 黎创, 徐鹏, 田瑞敏, 谢晨. 基于网络药理学探讨益肾化湿颗粒治疗慢性肾小球肾炎的机制[J]. 中华肾病研究电子杂志, 2021, 10(04): 181-188.
[8] 郭文秀, 吴胜男, 王小芸, 张敏. 基于网络药理学的百部联合川贝母治疗肺结核的作用机制研究[J]. 中华临床医师杂志(电子版), 2023, 17(03): 335-342.
[9] 陈弦, 孔俊虹, 沙晨曦, 龚楚桥. 基于网络药理学探讨脉通饮治疗冠心病的作用机制研究[J]. 中华临床医师杂志(电子版), 2021, 15(11): 882-889.
[10] 葛新顺, 于沛涛, 赵成松, 张英, 姚瑶. 帕拉米韦治疗儿童甲流的疗效及安全性[J]. 中华临床医师杂志(电子版), 2017, 11(11): 1869-1872.
[11] 许新强, 李雪松, 何伟业, 唐琼华. 2019年广州白云区医院监测点关于甲型流感和乙型流感流行情况分析[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 230-234.
阅读次数
全文


摘要