1 |
World Health Organization. Global tuberculosis report 2016. Geneva: World Health Organization, 2016.
URL
|
2 |
World Health Organization. Early detection of tuberculosis: an overview of approaches, guidelines and tools. Geneva: World Health Organization, 2011.
URL
|
3 |
Gazi MA, Islam MR, Kibria MG, et al. General and advanced diagnostic tools to detect Mycobacterium tuberculosis and their drug susceptibility: a review [J]. Eur J Clin Microbiol Infect Dis, 2015,34(5):851-861.
|
4 |
Laifangbam S, Singh HL, Singh NB, et al. A comparative study of fluorescent microscopy with Ziehl-Neelsen staining and culture for the diagnosis of pulmonary tuberculosis [J]. Kathmandu Univ Med J [KUMJ], 2009,7(27):226-230.
|
5 |
Hooja S, Pal N, Malhotra B, et al. Comparison of Ziehl Neelsen & Auramine O staining methods on direct and concentrated smears in clinical specimens [J]. Indian J Tuberc, 2011,58(2):72-76.
|
6 |
Breuninger M, van Ginneken B, Philipsen RH, et al. Diagnostic accuracy of computer-aided detection of pulmonary tuberculosis in chest radiographs: a validation study from sub-Saharan Africa [J]. PLoS One, 2014,9(9): e106381.
|
7 |
Philipsen RH, Sanchez CI, Maduskar P, et al. Automated chest-radiography as a triage for Xpert testing in resource-constrained settings: a prospective study of diagnostic accuracy and costs [J]. Sci Rep, 2015,5:12215.
|
8 |
Raqib R, Rahman J, Kamaluddin AK, et al. Rapid diagnosis of active tuberculosis by detecting antibodies from lymphocyte secretions [J]. J Infect Dis, 2003,188(3):364-370.
|
9 |
Huebner RE, Schein MF, Bass JB Jr. The tuberculin skin test [J]. Clin Infect Dis, 1993,17(6): 968-975.
|
10 |
Lee E, Holzman RS. Evolution and current use of the tuberculin test [J]. Clin Infect Dis, 2002,34(3):365-370.
|
11 |
Pai M, Zwerling A, Menzies D. Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update [J]. Ann Intern Med, 2008,149(3):177-184.
|
12 |
Mishra AK, Driessen NN, Appelmelk BJ, et al. Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction [J]. FEMS Microbiol Rev, 2011,35(6):1126-1157.
|
13 |
Flores LL, Steingart KR, Dendukuri N, et al. Systematic review and meta-analysis of antigen detection tests for the diagnosis of tuberculosis [J]. Clin Vacc Immunol Cvi, 2011,18(10): 1616-1627.
|
14 |
Peter J, Theron G, Chanda D, et al. Test characteristics and potential impact of the urine LAM lateral flow assay in HIV-infected outpatients under investigation for TB and able to self-expectorate sputum for diagnostic testing [J]. BMC Infect Dis, 2015,15:262.
|
15 |
Minion J, Leung E, Talbot E, et al. Diagnosing tuberculosis with urine lipoarabinomannan: systematic review and meta-analysis [J]. Eur Respir J, 2011,38(5):1398-1405.
|
16 |
Siddiqi SH. MGIT procedure manual for BACTEC MGIT 960 TB System. Foundation for Innovative New Diagnostics [M]. Geneva: 2016-11].
URL
|
17 |
Ogbaini-Emovon E. Current trends in the laboratory diagnosis of tuberculosis [J]. Benin J Postgraduate Med, 2009,11Suppl:79-90.
|
18 |
Ciftci IH, Karakece E. Comparative evaluation of TK SLC-L, a rapid liquid mycobacterial culture medium, with the MGIT system [J]. BMC Infect Dis, 2014,14:130.
|
19 |
Bwanga F, Haile M, Joloba ML, et al. Direct nitrate reductase assay versus microscopic observation drug susceptibility test for rapid detection of MDR-TB in Uganda [J]. PLoS One, 2011,6(5):e19565.
|
20 |
Leung E, Minion J, Benedetti A, et al. Microcolony culture techniques for tuberculosis diagnosis: a systematic review [J]. Int J Tuberc Lung Dis, 2012,16(1):16-23, i-iii.
|
21 |
Cui Z, Wang J, Zhu C, et al. Evaluation of a novel biphasic culture medium for recovery of mycobacteria: a multi-center study [J]. PLoS One, 2012,7(4):e36331.
|
22 |
Ranjan K, Sharma M. An approach to the detection of mycobacteria in clinically suspected cases of urinary tract infection in immunocompromised patients [J/OL]. Bacteriology, 2010,1(9):WMC00616.
URL
|
23 |
Arias M, Mello FC, Pavon A, et al. Clinical evaluation of the microscopic-observation drug-susceptibility assay for detection of tuberculosis [J]. Clin Infect Dis, 2007,44(5):674-680.
|
24 |
Ardizzoni E, Mulders W, Kotrikadze T, et al. The thin-layer agar method for direct phenotypic detection of multi- and extensively drug-resistant tuberculosis [J]. Int J Tuberc Lung Dis, 2015,19(12):1547-1552.
|
25 |
Blakemore R, Story E, Helb D, et al. Evaluation of the analytical performance of the Xpert MTB/RIF assay [J]. J Clin Microbiol, 2010,48(7):2495-2501.
|
26 |
Boehme CC, Nicol MP, Nabeta P, et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study [J]. Lancet, 2011,377(9776):1495-505.
|
27 |
Lawn SD, Mwaba P, Bates M, et al. Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test [J]. Lancet Infect Dis, 2013,13(4):349-361.
|
28 |
World Health Organization. WHO policy statement: molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis. Geneva: World Health Organization, 2015.
|
29 |
Quezada CM, Kamanzi E, Mukamutara J, et al. Implementation validation performed in Rwanda to determine whether the INNO-LiPA Rif. TB line probe assay can be used for detection of multidrug-resistant Mycobacterium tuberculosis in low-resource countries [J]. J Clin Microbiol, 2007,45(9):3111-3114.
|
30 |
Dubois Cauwelaert N, Ramarokoto H, Ravololonandriana P, et al. DNA extracted from stained sputum smears can be used in the MTBDRplus assay [J]. J Clin Microbiol, 2011,49(10): 3600-3603.
|
31 |
Lee YS, Kang HR, Lee SH, et al. Diagnostic usefulness of the GenoType MTBDRplus assay for detecting drug-resistant tuberculosis using AFB smear-negative specimens with positive TB-PCR result [J]. Infect Dis (Lond), 2016,48(5):350-355.
|
32 |
Mark PN. New developments in the laboratory diagnosis of tuberculosis [J]. CME, 2010,28(10):246-250.
|
33 |
Ling DI, Zwerling AA, Pai M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis [J]. Eur Respir J, 2008,32(5):1165-1174.
|
34 |
Morgan M, Kalantri S, Flore L, et al. A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis [J]. BMC Infect Dis, 2005,5:62.
|
35 |
Gryadunov D, Mikhailovich V, Lapa S, et al. Evaluation of hybridisation on oligonucleotide microarrays for analysis of drug-resistant Mycobacterium tuberculosis [J]. Clin Microbiol Infect, 2005,11(7):531-539.
|
36 |
Troesch A, Nguyen H, Miyada CG, et al. Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays [J]. J Clin Microbiol, 1999,37(1):49-55.
|
37 |
Sougakoff W, Rodrigue M, Truffot-Pernot C, et al. Use of a high-density DNA probe array for detecting mutations involved in rifampicin resistance in Mycobacterium tuberculosis [J]. Clin Microbiol Infect, 2004,10(4):289-294.
|
38 |
Kouzaki Y, Maeda T, Sasaki H, et al. A Simple and Rapid Identification Method for Mycobacterium bovis BCG with Loop-Mediated Isothermal Amplification [J]. PLoS One, 2015,10(7):e0133759.
|
39 |
Iwamoto T, Sonobe T, Hayashi K. Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples [J]. J Clin Microbiol, 2003,41(6):2616-2622.
|
40 |
World Health Organization. The use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis: policy guidance. Geneva: World Health Organization, 2016.
URL
|