1 |
BALL N, TEO W, CHANDRA S, et al. Parkinson's disease and the environment[J]. Encephalos, 2019, 10: 218.
|
2 |
GIBB W R. Neuropathology of Parkinson's disease and related syndromes[J]. Neurologic clinics, 1992, 10(2): 361-376.
|
3 |
TARAKAD A, JANKOVIC J. Diagnosis and management of Parkinson's Disease[J]. Seminars in neurology, 2017, 37(2): 118-126.
|
4 |
JANKOVIC J. Parkinson's disease: Clinical features and diagnosis[J]. Journal of neurology neurosurgery and psychiatry, 2008, 79(4): 368-376.
|
5 |
CHEN H, RITZ B. The search for environmental causes of Parkinson's disease: Moving forward[J]. Journal of Parkinsons disease, 2018, 8(s1): S9-S17.
|
6 |
TROJANOWSKI J Q. Rotenone neurotoxicity: A new window on environmental causes of Parkinson's disease and related brain amyloidoses[J]. Experimental neurology, 2003, 179(1): 6-8.
|
7 |
RICHARDSON J R, FITSANAKIS V, WESTERINK R H S, et al. Neurotoxicity of pesticides[J]. Acta neuropathologica, 2019, 138(3): 343-362.
|
8 |
BETARBET R, SHERER T B, MACKENZIE G, et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease[J]. Nature neuroscience, 2000, 3(12): 1301-1306.
|
9 |
CHEN Y, MCMILLAN-WARD E, KONG J, et al. Mitochondrial electron-transport-chain inhibitors of complexes I and Ⅱ induce autophagic cell death mediated by reactive oxygen species[J]. Journal of cell science, 2007, 120(Pt 23): 4155-4166.
|
10 |
SPIVEY A. Rotenone and paraquat linked to Parkinson's disease: Human exposure study supports years of animal studies[J]. Environmental health perspectives, 2011, 119(6): A259.
|
11 |
MAITRA U, CIESLA L. Using drosophila as a platform for drug discovery from natural products in Parkinson's disease[J]. Medchemcomm, 2019, 10(6): 867-879.
|
12 |
HONDA H M, KORGE P, WEISS J N. Mitochondria and ischemia/reperfusion injury[J]. Annals of the New York academy of sciences, 2005, 1047: 248-258.
|
13 |
SHADRINA M I, SLOMINSKII P A. Mitochondrial dysfunction and oxidative damages in the molecular pathology of Parkinson's disease[J]. Molecular biology (Mosk), 2008, 42(5): 809-819.
|
14 |
WU Y, ZHANG S, GONG X, et al. The epigenetic regulators and metabolic changes in ferroptosis-associated cancer progression[J]. Molecular cancer, 2020, 19(1): 39.
|
15 |
Do Van B, GOUEL F, JONNEAUX A, et al. Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC[J]. Neurobiology of disease, 2016, 94: 169-178.
|
16 |
PIZZO P, DRAGO I, FILADI R, et al. Mitochondrial Ca2+ homeostasis: Mechanism, role, and tissue specificities[J]. Pflügers Archiv: European journal of physiology, 2012, 464(1): 3-17.
|
17 |
BAUGHMAN J M, PEROCCHI F, GIRGIS H S, et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter[J]. Nature, 2011, 476(7360): 341-345.
|
18 |
CLAPHAM D E, KIRICHOK Y, KRAPIVINSKY G. The mitochondrial calcium uniporter is a highly selective ion channel[J]. Nature, 2004, 427(6972): 360-364.
|
19 |
ZOROV D B, JUHASZOVA M, SOLLOTT S J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiological reviews, 2014, 94(3): 909-950.
|
20 |
CAI Z, ZENG W, TAO K, et al. Myricitrin alleviates MPP(+)-induced mitochondrial dysfunction in a DJ-1-dependent manner in SN4741 cells[J]. Biochemical and biophysical research communications, 2015, 458(2): 227-233.
|
21 |
HEO H Y, PARK J M, KIM C H, et al. LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity[J]. Experimental cell research, 2010, 316(4): 649-656.
|
22 |
MANDEL S A, FISHMAN-JACOB T, YOUDIM M B. Genetic reduction of the E3 ubiquitin ligase element, SKP1A and environmental manipulation to emulate cardinal features of Parkinson's disease[J]. Parkinsonism and related disorders, 2012, 18 Suppl 1: S177-S179.
|
23 |
GUINEY S J, ADLARD P A, LEI P, et al. Fibrillar alpha-synuclein toxicity depends on functional lysosomes[J]. Journal of biological chemistry, 2020, 295(51): 17497-17513.
|
24 |
ZHANG L, GAO X, YUAN X, et al. Mitochondrial calcium uniporter opener spermine attenuates the cerebral protection of diazoxide through apoptosis in rats[J]. Journal of stroke and cerebrovascular diseases, 2014, 23(5): 829-835.
|
25 |
LIAO Y, HAO Y, CHEN H, et al. Mitochondrial calcium uniporter protein MCU is involved in oxidative stress-induced cell death[J]. Protein & cell, 2015, 6(6): 434-442.
|
26 |
PAN L, HUANG B J, MA X E, et al. MiR-25 protects cardiomyocytes against oxidative damage by targeting the mitochondrial calcium uniporter[J]. International journal of molecular sciences, 2015, 16(3): 5420-5433.
|
27 |
AYALA A, VENERO J L, CANO J, et al. Mitochondrial toxins and neurodegenerative diseases[J]. Frontiers in bioscience, 2007, 12: 986-1007.
|
28 |
GAKI G S, PAPAVASSILIOU A G. Oxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson's disease[J]. Neuromolecular medicine, 2014, 16(2): 217-230.
|
29 |
ZHAO M, CHEN J, MAO K, et al. Mitochondrial calcium dysfunction contributes to autophagic cell death induced by MPP(+) via AMPK pathway[J]. Biochemical and biophysical research communications, 2019, 509(2): 390-394.
|
30 |
WANG H, ZHAO M, CHEN J, et al. Mitochondrial calcium uniporter-mediated inhibition of 1-methyl-4-phenylpyridinium ions neurotoxicity in PC12 cells[J]. Neuroreport, 2018, 29(7): 570-576.
|
31 |
LI B, CHAUVIN C, DE PAULIS D, et al. Inhibition of complex I regulates the mitochondrial permeability transition through a phosphate-sensitive inhibitory site masked by cyclophilin D[J]. Biochim biophys acta, 2012, 1817(9): 1628-1634.
|
32 |
GIORDANO S, DODSON M, RAVI S, et al. Bioenergetic adaptation in response to autophagy regulators during rotenone exposure[J]. Journal of neurochemistry, 2014, 131(5): 625-633.
|
33 |
ZHANG J, STANTON D M, NGUYEN X V, et al. Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits[J]. Neuroscience, 2005, 135(3): 829-838.
|
34 |
YU L, WANG X, CHEN H, et al. Neurochemical and behavior deficits in rats with iron and rotenone co-treatment: Role of redox imbalance and neuroprotection by biochanin A[J]. Front neurosci, 2017, 11: 657.
|
35 |
ONYANGO I G, KHAN S M, BENNETT J P J R. Mitochondria in the pathophysiology of Alzheimer's and Parkinson's diseases[J]. Front biosci (Landmark Ed), 2017, 22(5): 854-872.
|
36 |
PANG S Y, HO P W, LIU H F, et al. The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson's disease[J]. Transl neurodegener, 2019, 8: 23.
|