1 |
Lee SX, Lim HN, Ibrahim I, et al. Horseradish peroxidase-labeled silver/reduced graphene oxide thin film-modified screen-printed electrode for detection of carcinoembryonic antigen [J]. Biosens Bioelectron, 2017, 89: 673-680.
|
2 |
Gong C, Gong Y, Khaing Oo MK, et al. Sensitive sulfide ion detection by optofluidic catalytic laser using horseradish peroxidase (HRP) enzyme [J]. Biosens Bioelectron, 2017, 96: 351.
|
3 |
Arola HO, Tullila A, Nathanail AV, et al. A simple and specific noncompetitive ELISA method for HT-2 toxin detection [J]. Toxins, 2017, 9(4): 145.
|
4 |
Tang Y, Lai W, Zhang J, et al. Competitive photometric and visual ELISA for aflatoxin B 1 based on the inhibition of the oxidation of ABTS [J]. Microchimica Acta, 2017, 184(7): 2387-2394.
|
5 |
Gao Y, Pallister J, Lapierre F, et al. A rapid assay for Hendra virus IgG antibody detection and its titre estimation using magnetic nanoparticles and phycoerythrin [J]. J Virol Methods, 2015, 222: 170-177.
|
6 |
Yamamoto S, Ohta N, Matsumoto A, et al. Haloperidol suppresses NF-kappa B to inhibit lipopolysaccharide-induced pro-inflammatory response in RAW 264 cells [J]. Med Sci Monit, 2016, 22: 367-372.
|
7 |
Wang S, Chen C, Su K, et al. Angiotensin II induces reorganization of the actin cytoskeleton and myosin light-chain phosphorylation in podocytes through rho/ROCK-signaling pathway [J]. Renal Fail, 2016, 38(2): 268-275.
|
8 |
Rashidi L, Ganji F, Vasheghani-Farahani E. Fluorescein isothiocyanate-dyed mesoporous silica nanoparticles for tracking antioxidant delivery [J]. Iet Nanobiotechnol, 2017, 11(4): 454-462.
|
9 |
Sano K, Ohashi M, Kanazaki K, et al. Indocyanine green-labeled polysarcosine for in vivo photoacoustic tumor imaging [J]. Bioconj Chem, 2017, 28(4): 1024-1030.
|
10 |
Ma R, Wu Q, Si T, et al. Oxygen and indocyanine green loaded microparticles for dual-mode imaging and sonodynamic treatment of cancer cells [J]. Ultrasonics Sonochemistry, 2017, 39: 197-207.
|
11 |
Sugie T, Ikeda T, Kawaguchi A, et al. Sentinel lymph node biopsy using indocyanine green fluorescence in early-stage breast cancer: a meta-analysis [J]. Int J Clin Oncol, 2017, 22(1): 1-7.
|
12 |
Liu Q, Chen M, Sun Y, et al. Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence /fluorescence /positron emission tomography imaging[J]. Biomaterials. 2011, 32(32): 8243-8253.
|
13 |
Francolon N, Boyer D, Leccia F, et al. Preparation of core/shell NaYF4:Yb,Tm@dendrons nanoparticles with enhanced upconversion luminescence for in vivo imaging [J]. Nanomedicine, 2016, 12(7): 2107-2113.
|
14 |
Zhou J, Chen S, Sun C, et al. A "submunition" dual-drug system based on smart hollow NaYF4/apoferritin nanocage for upconversion imaging [J]. Rsc Advances, 2016, 6(40): 33443-33454.
|
15 |
Chen G, Ohulchanskyy TY, Kumar R, et al. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence [J]. Acs Nano, 2010, 4(6): 3163-3168.
|
16 |
Wang M, Liu JL, Zhang YX, et al. Two-phase solvothermal synthesis of rare-earth doped NaYF4 upconversion fluorescent nanocrystals [J]. Materials Letters, 2009, 63(2): 325-327.
|
17 |
Goftman VV, Aubert T, Ginste DV, et al. Synthesis, modification, bioconjugation of silica coated fluorescent quantum dots and their application for mycotoxin detection [J]. Biosens Bioelectron, 2016, 79: 476-481.
|
18 |
单爽, 吴昊, 谭明乾, 等. 稀土上转换荧光纳米材料的制备与生物应用 [J].生物化学与生物物理进展, 2013, 40(10): 925-934.
|
19 |
Chen Z, Chen H, Hu H, et al. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels [J]. JACS, 2008, 130(10): 3023-3029.
|
20 |
Jin J, Gu YJ, Man CW, et al. Polymer-coated NaYF4:Yb3+/Er3+ upconversion nanoparticles for charge-dependent cellular imaging [J]. Acs Nano, 2011, 5(10): 7838-7847.
|
21 |
Yang W, Trau D, Renneberg R, et al. Layer-by-layer construction of novel biofunctional fluorescent microparticles for immunoassay applications [J]. J Colloid Interface Sci, 2001, 234(2): 356-362.
|
22 |
Liu F, Zhao Q, You H, et al. Synthesis of stable carboxy-terminated NaYF4: Yb3+, Er3+@SiO2 nanoparticles with ultrathin shell for biolabeling applications [J]. Nanoscale, 2013, 5(3): 1047-1053.
|
23 |
Johnson NJJ, Sangeetha NM, Boyer JC, et al. Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4:Yb3+/Er3+ nanoparticles [J]. Nanoscale, 2010, 2(5): 771-777.
|
24 |
And GSY, Chow GM. Water-Soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence [J]. Chem Materials. 2007, 19(3): 341-343.
|
25 |
Tianxing J, Xinqiang X, Xindong W. Monodisperse water-stable SiO2- coated fluoride upconversion nanoparticles with tunable shell thickness [J]. Int Nanomaterials, 2017,1: 15-18.
|
26 |
Homann C, Krukewitt L, Frenzel F, et al. NaYF4:Yb,Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield [J]. Angew Chem Int Ed Engl, 2018, 57(28): 8765-8769.
|
27 |
Chen Z, Wu X, Hu S, et al. Upconversion NaLuF4 fluorescent nanoprobes for jellyfish cell imaging and irritation assessment of organic dyes [J]. J Materials Chem, 2015, 3(23): 6067-6076.
|
28 |
Tianxing J, Xinqiang X, Xindong W, et al. Point of care upconversion nanoparticles-based lateral flow assay quantifying myoglobin in clinical human blood samples [J]. Sens Actuat Chemi, 2019, 282: 309-316.
|