切换至 "中华医学电子期刊资源库"

中华临床实验室管理电子杂志 ›› 2022, Vol. 10 ›› Issue (01) : 17 -22. doi: 10.3877/cma.j.issn.2095-5820.2022.01.004

实验研究

一种灭活型样本保存液在新型冠状病毒核酸快速检测中的应用评价
赵莉1, 陆柔剑1, 叶飞1, 黄保英1, 王慧娟1, 谭文杰1,()   
  1. 1. 102206 北京,中国疾病预防控制中心病毒病预防控制所
  • 收稿日期:2021-06-22 出版日期:2022-02-28
  • 通信作者: 谭文杰
  • 基金资助:
    国家重点研发计划(2021YFC0863300,2020YFC0840900)

Evaluation of an inactivated sample preservation solution for rapid detection of SARS-CoV-2

Li Zhao1, Roujian Lu1, Fei Ye1, Baoying Huang1, Huijuan Wang1, Wenjie Tan1,()   

  1. 1. National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
  • Received:2021-06-22 Published:2022-02-28
  • Corresponding author: Wenjie Tan
引用本文:

赵莉, 陆柔剑, 叶飞, 黄保英, 王慧娟, 谭文杰. 一种灭活型样本保存液在新型冠状病毒核酸快速检测中的应用评价[J]. 中华临床实验室管理电子杂志, 2022, 10(01): 17-22.

Li Zhao, Roujian Lu, Fei Ye, Baoying Huang, Huijuan Wang, Wenjie Tan. Evaluation of an inactivated sample preservation solution for rapid detection of SARS-CoV-2[J]. Chinese Journal of Clinical Laboratory Management(Electronic Edition), 2022, 10(01): 17-22.

目的

评价含表面活性剂Triton X-100及NP40的灭活型样本保存液对新型冠状病毒(SARS-CoV-2)的灭活效果及其对核酸快速检测的影响。

方法

通过测定灭活型样本保存液对SARS-CoV-2灭活前后病毒滴度变化,评价保存液的灭活效果;用灭活型样本保存液洗脱含有SARS-CoV-2模拟病毒的咽拭子样本,评价样本保存液对SARS-CoV-2核酸快速检测最低检测限和精密度的影响,并将SARS-CoV-2在灭活型样本保存液中保存不同时间以评价保存液对SARS-CoV-2核酸检测的影响。

结果

灭活型样本保存液在5 min内可使SARS-CoV-2滴度至少下降2.76×105倍;灭活型样本保存液对SARS-CoV-2核酸检测的灵敏度无影响,对SARS-CoV-2核酸检测Ct值的CV小于5%;SARS-CoV-2在灭活型样本保存液中于25 ℃或2 ℃~8 ℃条件下可至少稳定保存4 d。

结论

含表面活性剂Triton X-100及NP40的灭活型样本保存液可有效灭活SARS-CoV-2病毒,且灭活后病毒核酸检测不受影响,适用于核酸快速检测。

Objective

To evaluate the inactivation effect of sample preservation solution containing Triton X-100 and NP40 on novel coronavirus SARS-CoV-2 and its effect on rapid nucleic acid detection.

Methods

The virus inactivation effect was assessed by measuring the change of SARS-CoV-2 virus titer before and after the treatment with sample preservation solution . The influence on the minimum detection limit and precision of SARS-CoV-2 nucleic acid detection were evaluated by elution of throat swab samples containing SARS-CoV-2 simulated virus. The stability of nucleic acid of SARS-CoV-2 in the sample preservation solution was evaluated by spiking the SARS-CoV-2 virus in the solution and storing for different time.

Results

The SARS-CoV-2 virus titer decreased at least 2.76×105 times after being treated by the sample preservation solution in 5 minutes. The sample preservation solution had no effect on the sensitivity of SARS-CoV-2 nucleic acid detection, and the CV of SARS-CoV-2 nucleic acid detection Ct value was less than 5%. The SARS-CoV-2 virus can be stored in the sample preservation solution for at least 4 days at 25 ℃ or 2~8 ℃.

Conclusion

The sample storage solution containing surfactants Triton X-100 and NP40 can effectively inactivate virus, and the virus nucleic acid detection is not affected after inactivation, which is suitable for rapid nucleic acid detection.

表1 灭活型保存液洗脱的SARS-CoV-2梯度浓度样本的检测结果
表2 低值精密度检测结果
表3 高值精密度检测结果
表4 对照组和实验组在25 ℃和2 ℃~8 ℃条件下保存的稳定性检测结果
1
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382(8): 727-733.
2
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia[J]. N Engl J Med, 2020, 382(13): 1199-1207.
3
Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany[J]. N Engl J Med, 2020, 382(10): 970-971.
4
Van DN, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1[J]. N Engl J Med, 2020, 382(16): 1564-1567.
5
World Health Organization. Weekly epidemiological update on COVID-19[R]. WHO, 2021.
6
World Health Organization. Laboratory testing for coronavirus disease (COVID-19) in suspected human cases: interim guidance[R]. WHO, 2020.
7
Zachariah R, Harries AD. The WHO clinical case definition for suspected cases of Ebola virus disease arriving at Ebola holding units: reason to worry?[J]. Lancet Infect Dis, 2015, 15(9): 989-990.
8
Zhen W, Smith E, Manji R, et al. Clinical evaluation of three sample-to-answer platforms for detection of SARS-CoV-2[J]. J Clin Microbiol, 2020, 58(8): e00783-20.
9
Smithgall MC, Scherberkova I, Whittier S, et al. Comparison of Cepheid Xpert Xpress and Abbott ID now to roche cobas for the rapid detection of SARS-CoV-2[J]. J Clin Virol, 2020, 128: 104428.
10
Wolters F, Van de Bovenkamp J, Van den Bosch B, et al. Multi-center evaluation of Cepheid Xpert Xpress SARS-CoV-2 point-of-care test during the SARS-CoV-2 pandemic[J]. J Clin Virol, 2020, 128: 104426.
11
国务院应对新型冠状病毒肺炎疫情联防联控机制医疗救治组. 医疗机构新型冠状病毒核酸检测工作手册(试行第二版)[J]. 中国病毒病杂志, 2021, 11(3): 163-167.
12
马亮, 崔淑娟, 韩呈武, 等. 核酸快速检测系统在新型冠状病毒检测中的应用评价[J]. 中华预防医学杂志, 2021, 55(2): 219-225.
13
Adams NM, Leelawong M, Benton A, et al. COVID-19 diagnostics for resource-limited settings: Evaluation of "unextracted" qRT-PCR[J]. J Med Virol, 2021, 93(1): 559-563.
14
Pastorino B, Touret F, Gilles M, et al. Evaluation of heating and chemical protocols for inactivating SARS-CoV-2[J]. Viruses, 2020, 12(6): 624.
15
Loveday EK, Hain KS, Kochetkova I, et al. Effect of inactivation methods on SARS-CoV-2 virion protein and structure[J]. Viruses, 2021, 13(4): 562.
16
Jahromi R, Mogharab V, Jahromi H, et al. Synergistic effects of anionic surfactants on coronavirus (SARS-CoV-2) virucidal efficiency of sanitizing fluids to fight COVID-19[J]. Food Chem Toxicol, 2020, 145: 111702.
17
Wang T, Lien C, Liu S, et al. Effective heat inactivation of SARS-CoV-2[EB/OL]. MedRxiv, 2020.

URL    
18
Patterson EI, Prince T, Anderson ER, et al. Methods of inactivation of SARS-CoV-2 for downstream biological assays[J]. J Infect Dis, 2020, 222(9): 1462-1467.
19
Chan KH, Sridhar S, Zhang RR, et al. Factors affecting stability and infectivity of SARS-CoV-2[J]. J Hosp Infect, 2020, 106(2): 226-231.
20
Pere H, Podglajen I, Baillard JL, et al. Thermal inactivation and nucleic acid amplification-based testing for SARS-CoV-2[J]. J Clin Virol, 2020, 131: 104588.
21
段秀枝, 王旭楚, 俞攀, 等. 病毒灭活处理对2019新型冠状病毒核酸检测弱阳性结果的影响[J]. 中华检验医学杂志, 2020, 43(4): 358-363.
22
姜蕾, 张丽媛, 刘大宁. 两种灭活方法对2019新型冠状病毒咽拭子标本病毒核酸检测结果的影响[J]. 分子诊断与治疗杂志, 2020, 12(4): 4.
23
Yan Y, Chang L, Wang L. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): Current status, challenges, and countermeasures[J]. Rev Med Virol, 2020, 30(3): e2106.
24
Tawfik SM, Abd-Elaal AA, Shaban SM, et al. Surface, thermodynamic and biological activities of some synthesized Gemini quaternary ammonium salts based on polyethylene glycol[J]. J Ind Eng Chem, 2015, 30: 112-119.
25
Zhang S, Ding S, Yu J, et al. Antibacterial activity, in vitro cytotoxicity, and cell cycle arrest of gemini quaternary ammonium surfactants[J]. Langmuir, 2015, 31(44): 12161-12169.
26
Chepurnov AA, Bakulina LF, Dadaeva AA, et al. Inactivation of Ebola virus with a surfactant nanoemulsion[J]. Acta Trop, 2003, 87(3): 315-320.
27
Hamouda T, Myc A, Donovan B, et al. A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi[J]. Microbiol Res, 2001, 156(1): 1-7.
28
Asculai SS, Weis MT, Rancourt MW, et al. Inactivation of herpes simplex viruses by nonionic surfactants[J]. AAC, 1978, 13(4): 686-690.
29
Patterson EI, Prince T, Anderson ER, et al. Methods of inactivation of SARS-CoV-2 for downstream biological assays[J]. JID, 2020, 222(9): 1462-1467.
30
Welch SR, Davies KA, Buczkowski H, et al. Analysis of inactivation of SARS-CoV-2 by specimen transport media, nucleic acid extraction reagents, detergents, and fixatives[J]. J Clin Microbiol, 2020, 58(11): e01713-01720.
[1] 翟敬芳, 吴杰斌, 刘枭, 金宝, 王彦波, 陈洋, 王云, 周广玲, 周彬. 无创高频振荡通气在极低出生体重早产儿呼吸窘迫综合征初始呼吸支持治疗中的应用[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 598-605.
[2] 金宝, 高翔羽, 杨波, 黄迪, 任漪. 枸橼酸咖啡因联合加温湿化高流量鼻导管通气预防呼吸窘迫综合征早产儿拔管失败的临床研究[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(06): 695-702.
[3] 翟敬芳, 吴杰斌, 金宝, 刘枭, 王彦波, 周广玲, 宋晓玉, 王珂, 周彬, 王凯. 加温湿化高流量鼻导管通气与经鼻持续气道正压通气对轻度新生儿呼吸窘迫综合征初始呼吸支持治疗比较[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(06): 632-638.
[4] 中国肝移植注册中心, 国家肝脏移植质控中心, 国家人体捐献器官获取质控中心, 国家骨科与运动康复临床医学研究中心, 中国医师协会器官移植医师分会移植器官质量控制专业委员会中国医院协会器官获取与分配工作委员会, 国家创伤医学中心器官保护专业委员会. 中国移植器官保护专家共识(2022版)[J]. 中华普通外科学文献(电子版), 2022, 16(04): 241-254.
[5] 中国肝移植注册中心, 国家肝脏移植质控中心, 国家人体捐献器官获取质控中心, 国家骨科与运动康复临床医学研究中心, 中国医师协会器官移植医师分会移植器官质量控制专业委员会, 中国医院协会器官获取与分配工作委员会, 国家创伤医学中心器官保护专业委员会. 中国移植器官保护专家共识(2022版)[J]. 中华移植杂志(电子版), 2022, 16(01): 1-12.
[6] 刘剑戎, 谢芝芝, 黎利娟, 吕海金, 安玉玲, 易小猛, 魏绪霞, 席云, 易慧敏, 熊天威. 器官保存液病原体与肝移植受者感染关系分析[J]. 中华肝脏外科手术学电子杂志, 2022, 11(03): 273-277.
[7] 刘娟丽, 马四清, 陈强. 肺表面活性蛋白-D功能及其在肺部常见疾病中的研究进展[J]. 中华重症医学电子杂志, 2022, 08(02): 167-172.
[8] 熊俊琪, 陈凤花. 移动式核酸检测实验室在大规模人群新型冠状病毒核酸筛查应用中的经验介绍[J]. 中华临床实验室管理电子杂志, 2022, 10(03): 175-182.
[9] 李志学, 徐英, 刘峥, 余卫军, 马艳, 王德旺, 赵仁成, 谢艾伦, 钱珍珠, 郭艳芳, 陈家隆. 新型冠状病毒肺炎大流行对深圳市青年人群膳食习惯改变意愿的影响[J]. 中华临床实验室管理电子杂志, 2022, 10(02): 111-118,123.
[10] 江倩, 陈豫钦, 陈莉延, 刘心怡, 陈如冲, 顾为丽, 苏小芬, 李征途, 李少强, 郭文亮, 叶枫. 《新型冠状病毒肺炎防控》慕课在住院医师规范化培训教学中的应用初探[J]. 中华临床实验室管理电子杂志, 2021, 09(04): 248-251.
[11] 龚文娟, 陈宝荣, 孙慧颖, 郑燕华. 新型冠状病毒核酸检测阳性质控品污染原因分析及解决办法[J]. 中华临床实验室管理电子杂志, 2021, 09(04): 237-241.
[12] 余娟平, 李志强, 李龙, 魏琦, 都伟杰, 毕真, 李芳云, 方琼, 陈浩, 陈良军, 康卫灵, 王智慧, 蔡维文, 殷梅梅, 方婷, 王倩倩, 梅圣学, 李强, 常中宝, 申梦来, 程雅婷, 李晓华. 对新型冠状病毒核酸检测低基因扩增信号样本的再分析[J]. 中华临床实验室管理电子杂志, 2021, 09(04): 231-236.
[13] 朱镭, 朱庆义. 新型冠状病毒及其分子生物学诊断新技术[J]. 中华临床实验室管理电子杂志, 2021, 09(03): 174-181.
[14] 宁美微, 黄雅君, 曾嵘, 刘湘. 淋巴细胞指标在新型冠状病毒肺炎诊治中的作用[J]. 中华临床实验室管理电子杂志, 2021, 09(03): 169-173.
[15] 宋江勤, 陈玫君, 曹伟伟, 康娜, 吕文静, 周君阳. 提高新型冠状病毒核酸检测能力与效率的策略[J]. 中华临床实验室管理电子杂志, 2021, 09(03): 129-132,149.
阅读次数
全文


摘要